Wavelet Galerkin FEM
 for

 Operator Equations with Stochastic Data

 Operator Equations with Stochastic Data}

Ch. Schwab

Seminar für Angewandte Mathematik

ETH Zürich, Switzerland
Joint with Tobias von Petersdorff, UM College Park CEMRACS06 July+August 2006, Luminy, France.

IHP Network "Breaking Complexity" EC contract number HPRN-CT-2002-00286 Swiss Federal Office for Science and Education grant No. BBW 02.0418.

Numerical models in engineering can be solved with high accuracy
if input data are known exactly.

Often, however,
input data are not known exactly
and
accurate numerical solutions are of limited use.

- Mathematical description of uncertainty in input data and solution?
- How to propagate data uncertainty through an engineering FEM simulation?
- How to process statistical information in FEM?

Goal:

given statistics of input data, compute (deterministic) solution statistics.
Tool:
Formulation and solution of Stochastic Partial Differential Equation (SPDE)

Basic Problem: Operator Equation w. Stochastic Data
Find $u: \Omega \ni \omega \rightarrow V$ such that

$$
A u=f(\cdot, \omega), \quad f: \Omega \ni \omega \rightarrow V^{\prime}
$$

References

Perturbation Methods; "First Order Second Moment" (FOSM)
J. B. Keller (1964)
M. Kleiber, T.D. Hien (1992)

CS and R.A. Todor (2003)

Stochastic Galerkin; Wiener Polynomial Chaos (Karhunen-Loève)
R. G. Ghanem, P. D. Spanos (1991)
I. Babuska, J.T. Oden et al. (2001)
G. E. Karniadakis, D. Xiu (2002)

Matthies and Keese (2005)

Outline

1 Random fields, statistics
2 Stochastic boundary value problem (sBVP)
3 Stochastic Operator Equations
4 Example: Stochastic boundary integral equation (sPDE)
5 Sparse Monte Carlo FEM
6 Sparse Tensor Product FEM
7 Conclusions
8 Application: 2nd Moment Analysis in Random Domains

Random fields, statistics

$$
D \subset \mathbb{R}^{d} \quad \text { bounded domain, } \quad \Gamma=\partial D=\Gamma_{0} \cup \Gamma_{1} \quad \text { Lipschitz }
$$

$$
(\Omega, \Sigma, P) \quad \text { probability space }
$$

Random fields on Γ, D :
X separable Hilbert space. $u(x, \omega)$ random field iff

$$
u \in L^{0}(\Omega, X):=\left\{u(x, \omega): \quad \Omega \rightarrow X \mid \quad \Omega \ni \omega \rightarrow\|u(\cdot, \omega)\|_{X} \text { is } P \text {-measurable }\right\}
$$

A random field $u: \Omega \rightarrow X$ is in $L^{1}(\Omega, X)$ if $\omega \mapsto\|u(\omega)\|_{X}$ is integrable so that

$$
\|u\|_{L^{1}(\Omega, X)}:=\int_{\Omega}\|u(\omega)\|_{X} d P(\omega)<\infty
$$

In this case the Bochner integral

$$
\mathbb{E} u:=\int_{\Omega} u(\omega) d P(\omega) \in X
$$

exists and we have

$$
\begin{equation*}
\|\mathbb{E} u\|_{X} \leq\|u\|_{L^{1}(\Omega, X)} \tag{1}
\end{equation*}
$$

$B: X \rightarrow Y$ continuous, linear.
$u \in L^{k}(\Omega, X)$ random field in $X \Longrightarrow v(\omega)=B u(\omega) \in L^{k}(\Omega, Y)$

$$
\|B u\|_{L^{k}(\Omega, Y)} \leq C\|u\|_{L^{k}(\Omega, X)}
$$

and

$$
B \int_{\Omega} u d P(\omega)=\int_{\Omega} B u d P(\omega) .
$$

Statistical moments of u : for any $k \in \mathbb{N}$ need k-fold tensor product spaces

$$
X^{(k)}=\underbrace{X \otimes \cdots \otimes X}_{k \text {-times }}
$$

equipped with natural norm $\|\circ\|_{X^{(k)}}$:

$$
\forall u_{1}, \ldots, u_{k} \in X \quad\left\|u_{1} \otimes \ldots \otimes u_{k}\right\|_{X^{(k)}}=\left\|u_{1}\right\|_{X} \ldots\left\|u_{k}\right\|_{X}
$$

For $u \in L^{k}(\Omega, X)$ consider random field

$$
u^{(k)}=u(\omega) \otimes \cdots \otimes u(\omega) \in L^{1}\left(\Omega, X^{(k)}\right)
$$

and

$$
\begin{align*}
\left\|u^{(k)}\right\|_{L^{1}\left(\Omega, X^{(k)}\right)} & =\int_{\Omega}\|u(\omega) \otimes \cdots \otimes u(\omega)\|_{X^{(k)}} d P(\omega) \\
& =\int_{\Omega}\|u(\omega)\|_{X} \cdots\|u(\omega)\|_{X} d P(\omega)=\|u\|_{L^{k}(\Omega, X)}^{k} \tag{2}
\end{align*}
$$

Define k-th moment (k-point correlation function) $\mathcal{M}^{k} u$ as expectation of $u \otimes \cdots \otimes u$:

Definition 0

For $u \in L^{k}(\Omega, X)$ for some integer $k \geq 1$, the k-th moment of $u(\omega)$ is defined by

$$
\begin{equation*}
\mathcal{M}^{k} u=\mathbb{E}[\underbrace{u \otimes \ldots \otimes u}_{k \text {-times }}]=\int_{\omega \in \Omega} \underbrace{u(\omega) \otimes \ldots \otimes u(\omega)}_{k \text {-times }} d P(\omega) \in X^{(k)} \tag{3}
\end{equation*}
$$

Application: Covariance of $u \in L^{2}(\Omega, V), V$ separable and reflexive.

$$
\operatorname{Cov}[u]=\mathbb{E}[(u-\mathbb{E} u) \otimes(u-\mathbb{E} u)] \in V \otimes V
$$

If u "sufficiently regular":
Covariance:

$$
\operatorname{Cov}[u]\left(x, x^{\prime}\right)=\int_{\Omega}(u(x, \omega)-\mathbb{E} u(x))\left(u\left(x^{\prime}, \omega\right)-\mathbb{E} u\left(x^{\prime}\right)\right) d P(\omega), \quad x, x^{\prime} \in D
$$

k-th Moment (k-point correlation function): if $u \in L^{k}(\Omega, V)$, then

$$
\left\{\begin{array}{l}
\mathcal{M}^{(k)} u=\mathbb{E}[u \otimes \ldots \otimes u] \in V^{(k)}:=V \otimes \ldots \otimes V: \\
\mathcal{M}^{(k)} u\left(x_{1}, \ldots, x_{k}\right):=\int_{\Omega} u\left(x_{1}, \omega\right) \otimes \ldots \otimes u\left(x_{k}, \omega\right) d P(\omega)
\end{array}\right.
$$

Stochastic Operator Equation

Given $A: V \rightarrow V^{\prime}$ linear, bounded, $f \in L^{1}\left(\Omega, V^{\prime}\right)$, find $u \in L^{1}(\Omega, V)$:

$$
A u=f
$$

Assume ex. $\alpha>0$ and $T: V \rightarrow V^{\prime}$ compact such that

$$
\begin{equation*}
\forall v \in V:\langle(A+T) v, v\rangle \geq \alpha\|v\|_{V}^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ker} A=\{0\} \tag{5}
\end{equation*}
$$

Proposition 1

Assume (4) and (5). Then for every $f \in L^{0}\left(\Omega, V^{\prime}\right)$ exists a unique $u \in L^{0}(\Omega, V)$ solution of $A u=f$.

Statistics

Mean Field: if $u \in L^{1}(\Omega, V)\left\{\begin{array}{l}E_{u} \in V: \\ E_{u}(x):=\int_{\Omega} u(x, \omega) d P(\omega)\end{array}\right.$
Covariance: if $u \in L^{2}(\Omega, V)\left\{\begin{array}{l}C[u] \in V \otimes V: \\ C[u](x, y):=\int_{\Omega}\left(u(x, \omega)-E_{u}(x)\right)\left(u(y, \omega)-E_{u}(y)\right) d P(\omega)\end{array}\right.$
Variance:

$$
(\operatorname{Var} u)(x)=\mathbb{E}\left[u^{2}\right](x)-(\mathbb{E}[u](x))^{2}=\left(\mathcal{M}^{(2)}[u]\right)(x, x)-(\mathbb{E}[u](x))^{2}
$$

k th Moment: if $u \in L^{k}(\Omega, V)\left\{\begin{array}{l}\mathcal{M}^{(k)} u \in V^{(k)}:=V \otimes \ldots \otimes V: \\ \mathcal{M}^{(k)} u\left(x_{1}, \ldots, x_{k}\right):=\int_{\Omega} u\left(x_{1}, \omega\right) \otimes \ldots \otimes u\left(x_{k}, \omega\right) d P(\omega)\end{array}\right.$

Proposition 2

Assume (4) and (5). Then for every $f \in L^{k}\left(\Omega, V^{\prime}\right)$ holds $u \in L^{k}(\Omega, V)$.

Example: Stochastic Dirichlet Problem

$D \subset \mathbb{R}^{3}$ bounded, Lipschitz.

$$
\Delta U=0 \text { in } D
$$

subject to Dirichlet boundary conditions

$$
\gamma_{0} U=\left.U\right|_{\Gamma}=u \text { on } \Gamma
$$

Given

$$
u \in L^{k}\left(\Omega, H^{\frac{1}{2}}(\Gamma)\right), \quad k \geq 0
$$

ex. unique solution

$$
U(x, \omega) \in L^{k}\left(\Omega, H^{1}(D)\right) \quad \text { (Sch. \& Todor 2003). }
$$

Example: BEM for Stochastic Dirichlet Problem

$$
\begin{gathered}
U(x, \omega)=(S L \sigma)(x, \omega):=\int_{\Gamma} e(x, y) \sigma(y, \omega) d s_{y} \\
V=H^{-1 / 2}(\Gamma), \quad \sigma(x, \omega): \Omega \rightarrow H^{-1 / 2}(\Gamma) \text { random flux }
\end{gathered}
$$

Fubini: $S L$ and $\mathcal{M}^{(1)}$ commute. Hence

$$
\mathbb{E}[U]=\mathcal{M}^{(1)}[U]=\mathcal{M}^{(1)}[S L \sigma]=S L\left[\mathcal{M}^{(1)}[\sigma]\right]=S L[\mathbb{E}[\sigma]]
$$

where the mean field $\mathbb{E}[\sigma]=\mathcal{M}^{(1)}[\sigma] \in H^{-\frac{1}{2}}(\Gamma)$ satisfies first kind deterministic BIE

$$
\begin{equation*}
S \mathbb{E}[\sigma]=\mathbb{E}[u] \in H^{\frac{1}{2}}(\Gamma) \tag{6}
\end{equation*}
$$

Unique Solvability (Nédélec and Planchard (1973)): ex. $\gamma>0$ such that

$$
\forall \sigma \in H^{-1 / 2}(\Gamma): \quad\langle\sigma, S \sigma\rangle \geq \gamma\|\sigma\|_{H^{-1 / 2}(\Gamma)}^{2}
$$

Example: BEM for Stochastic Dirichlet Problem

If in the stochastic Dirichlet problem $u \in L^{2}\left(\Omega, H^{\frac{1}{2}}(\Gamma)\right)$ and $\mathbb{E}[u]=0$, then $U \in L^{2}\left(\Omega, H^{1}(D)\right)$ and

$$
C[U]=\mathcal{M}^{(2)} U=\mathcal{M}^{(2)}(S L \psi)=(S L \otimes S L) \mathcal{M}^{(2)} \psi=\int_{\Gamma} \int_{\Gamma} e(x, z) e(y, w) C[\sigma](z, w) d s_{z} d s_{w}
$$

where

$$
C[\sigma] \in H^{-\frac{1}{2},-\frac{1}{2}}(\Gamma \times \Gamma):=H^{-\frac{1}{2}}(\Gamma) \otimes H^{-\frac{1}{2}}(\Gamma)
$$

satisfies the first kind BIE

$$
(S \otimes S) C[\sigma]=C[u] \in H^{\frac{1}{2}, \frac{1}{2}}(\Gamma \times \Gamma)
$$

Solvability:

$$
\forall C[\sigma] \in H^{-\frac{1}{2},-\frac{1}{2}}(\Gamma \times \Gamma): \quad\langle(S \otimes S) C[\sigma], C[\sigma]\rangle \geq c_{S}^{2}\|C[\sigma]\|_{H^{-\frac{1}{2},-\frac{1}{2}}(\Gamma \times \Gamma)}^{2}
$$

Goal of Computation

For the operator equation

$$
A u=f
$$

with $f \in L^{k}(\Omega, V)$,

$$
\text { given } \mathcal{M}_{f}^{(k)}, \quad \text { find } \mathcal{M}_{u}^{(k)}
$$

Approaches:

- Monte-Carlo Galerkin FEM ("Collocation in ω "): dense and sparse
- Sparse Wavelet FEM for deterministic approximation of $\mathcal{M}^{(k)}$

Monte Carlo - I

Given data ensemble

$$
\left\{f\left(\omega_{j}\right), \quad j=1, \ldots, M\right\} \subset V^{\prime}
$$

generate (in parallel) solution ensemble

$$
\left\{u\left(\omega_{j}\right), \quad j=1, \ldots, M\right\} \subset V
$$

Theorem 3

Assume (4) and (5) and that $f \in L^{2 k}\left(\Omega, V^{\prime}\right)$.
Estimate $\mathcal{M}^{(k)} u$ by the k-th moment of ensemble $\left\{u\left(\omega_{j}\right): j=1, \ldots, M\right\}$, i.e. by

$$
\bar{E}_{\mathcal{M}^{(k)} u}^{M}:=\overline{u \otimes \cdots \otimes u}{ }^{M}=\frac{1}{M} \sum_{j=1}^{M} u\left(\omega_{j}\right) \otimes \ldots \otimes u\left(\omega_{j}\right) \in V^{(k)} .
$$

Then ex. $C(k)>0$ such that for every $M \geq 1$ and every $0<\varepsilon<1$ holds

$$
\begin{equation*}
P\left(\left\|\mathcal{M}^{(k)} u-\bar{E}_{\mathcal{M}^{(k)} u}^{M}\right\|_{V \otimes \ldots \otimes V} \leq C \frac{\left\|\mathcal{M}^{2 k}(f)\right\|_{V^{\prime}(2 k)}^{1 / 2}}{\sqrt{\varepsilon M}}\right) \geq 1-\varepsilon \tag{7}
\end{equation*}
$$

Monte Carlo - II

Lemma (Law of iterated logarithm in Hilbert spaces):

V separable Hilbert and $X \in L^{2}(\Omega, V)$. Then

$$
\begin{equation*}
\limsup _{M \rightarrow \infty} \frac{\left\|\bar{X}^{M}-E(X)\right\|_{V}}{\left(2 M^{-1} \log \log M\right)^{1 / 2}} \leq\|X-E(X)\|_{L^{2}(\Omega, V)} \quad \text { with probability } 1 . \tag{8}
\end{equation*}
$$

Proof: Classical law of iterated logarithm: for real valued $Y(\omega)$ holds

$$
\limsup _{M \rightarrow \infty} \frac{\left|\bar{Y}^{M}-E(Y)\right|^{2}}{2 M^{-1} \log \log M}=\operatorname{Var} Y \quad \text { with probability } 1
$$

Let $Z:=X-E(X)$. V separable \Rightarrow w.l.o.g $V=\ell^{2}=\operatorname{span}\left\{e_{j}\right\}_{j=1}^{\infty}$ and $Y:=\left(e^{j}, Z\right)=Z_{j} \in \mathbb{R}$. Apply (8) with

$$
\operatorname{Var} Y=\left(e^{j} \otimes e^{j}, \mathcal{M}^{2} Z\right)=\left(\mathcal{M}^{2} Z\right)_{j, j}
$$

Add estimates for $j=1,2, \ldots$ and obtain

$$
\limsup _{M \rightarrow \infty} \frac{\sum_{j=1}^{\infty}\left|Z_{j}\right|^{2}}{2 M^{-1} \log \log M} \leq \sum_{j=1}^{\infty}\left(\mathcal{M}^{2} Z\right)_{j, j} \quad \text { with probability } 1
$$

Monte Carlo - II

Application: P-a.s. convergence of MCM (Semidiscrete Case!)
Theorem 4
Let $f \in L^{2 k}\left(\Omega, V^{\prime}\right)$. Then

$$
\limsup _{M \rightarrow \infty} \frac{\left\|\bar{E}_{\mathcal{M}^{k} u}^{M}-\mathcal{M}^{k} u\right\|_{V^{(k)}}}{\left(2 M^{-1} \log \log M\right)^{1 / 2}} \leq C\|f\|_{L^{2 k\left(\Omega, V^{\prime}\right)}}^{k} \quad \text { with probability } 1 .
$$

Monte Carlo - III
 MCM - convergence in the absence of 2nd Moments

Theorem 5

Let $k \geq 1$ and assume

$$
f \in L^{\alpha k}\left(\Omega, V^{\prime}\right) \quad \text { for some } \quad \alpha \in(1,2]
$$

Then ex. C such that for every $M \geq 1$ and every $0<\epsilon<1$

$$
\begin{equation*}
P\left(\left\|\bar{E}_{\mathcal{M}^{k} u}^{M}-\mathcal{M}^{k} u\right\|_{V^{(k)}} \leq C \frac{\|f\|_{L^{\alpha k}\left(\Omega, V^{\prime}\right)}^{k}}{\varepsilon^{1 / \alpha} M^{1-1 / \alpha}}\right) \geq 1-\epsilon \tag{9}
\end{equation*}
$$

So far: MCM assuming that $A u=f$ solved exactly ("Semidiscrete MCM").
Next: Galerkin FEM in V.

Galerkin FEM

Dense sequence of subspaces:

$$
V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{\ell} \subset V_{\ell+1} \subset \ldots V
$$

Galerkin FEM: given $f \in L^{k}\left(\Omega, V^{\prime}\right)$, find

$$
u^{L}(\omega) \in L^{k}\left(\Omega, V^{L}\right) \text { such that } \quad\left\langle v^{L}, A u^{L}(\omega)\right\rangle=\left\langle v^{L}, f(\omega)\right\rangle \quad \forall v^{L} \in V_{L}
$$

Galerkin Projection: $\quad G_{L}: V \rightarrow V_{L}$ defined by

$$
\forall v \in V_{L}: \quad\left\langle A G_{L} u, v\right\rangle=\langle f, v\rangle
$$

is stable: ex. $L_{0}>0$ s.t.

$$
\forall L \geq L_{0}: \quad\left\|G_{L} u\right\|_{V} \leq C\|u\|_{V}
$$

and converges quasioptimally:

$$
\forall L \geq L_{0} \quad \forall v \in V_{L}: \quad\left\|u(\omega)-u_{L}(\omega)\right\|_{V} \leq C\|u(\omega)-v\|_{V} \quad P-\text { a.e. } \omega \in \Omega
$$

Convergence Rates

Smoothness Spaces:

$$
\left\{X_{s}\right\}_{s \geq 0}, \quad X_{0}=V, \quad X_{s} \subseteq V, \quad\left\{Y_{s}\right\}_{s \geq 0}, \quad Y_{0}=V^{\prime}, \quad Y_{s} \subseteq V^{\prime}
$$

Regularity:

$$
A^{-1}: Y_{s} \ni f \rightarrow u \in X_{s}, \quad s \geq 0
$$

Convergence Rate:

$$
\left\|u(\omega)-u_{L}(\omega)\right\|_{V} \leq C \Phi\left(s, N_{\ell}\right)\|u\|_{X_{s}} \quad \text { where } \quad \Phi\left(s, N_{\ell}\right):=\sup _{v \in X_{s}} \inf _{v_{\ell} \in V_{\ell}} \frac{\left\|v-v_{\ell}\right\|_{V}}{\|v\|_{X_{s}}}
$$

MC Galerkin: given $\left\{f\left(\omega_{j}\right): j=1, \ldots, M\right\}$, compute $\left\{u_{L}\left(\omega_{j}\right): j=1, \ldots, M\right\}$ and

$$
\bar{E}_{\mathcal{M}^{k} u}^{M, L}:=\frac{1}{M} \sum_{j=1}^{M} \underbrace{u_{L}\left(\omega_{j}\right) \otimes \ldots \otimes u_{L}\left(\omega_{j}\right)}_{k \text {-times }} \in V_{L}^{(k)} .
$$

Work:

$$
O\left(N_{L}^{k}\right) \quad \text { where } \quad N_{L}=\operatorname{dim} V_{L} .
$$

Wavelet FEM (Cohen, Dahmen, Kunoth, Schneider, ...)

Wavelet Scale:

$$
W_{0}:=V_{0}, \quad V_{\ell}=V_{\ell-1} \oplus W_{\ell}, \ell=1,2, \ldots
$$

Sparse Tensor Product Space (Smol'yak, Teml'yakov, Zenger, Griebel,...):

$$
\widehat{V}_{L}^{(k)}=\sum_{\substack{\vec{\ell} \in \mathbb{N}_{0}^{k} \\|\vec{\ell}| \leq L}} W_{\ell_{1}} \otimes W_{\ell_{2}} \otimes \cdots \otimes W_{\ell_{k}}
$$

Sparse Projection (quasi-interpolation):

$$
\widehat{P}_{L}^{(k)}: V^{(k)} \rightarrow \hat{V}_{L}^{(k)} \text { given by }\left(\widehat{P}_{L}^{(k)} v\right)(x):=\sum_{\substack{0 \leq \ell_{1}+\ldots+\ell_{k} \leq L \\ 1 \leq j_{\nu} \leq n_{\ell_{\nu}} \nu=1, \ldots, k}} v_{j_{1} \ldots j_{k}}^{\ell_{1} \ldots \ell_{j}} \psi_{j_{1}}^{\ell_{1}}\left(x_{1}\right) \ldots \psi_{k}^{\ell_{k}}\left(x_{k}\right)
$$

or

$$
\widehat{P}_{L}^{(k)}=\sum_{0 \leq \ell_{1}+\cdots+\ell_{k} \leq L} Q_{\ell_{1}} \otimes \cdots \otimes Q_{\ell_{k}} \quad \text { where } \quad Q_{\ell}:=P_{\ell}-P_{\ell-1}, \ell=0,1, \ldots \text { and } P_{-1}:=0
$$

Biorthogonal Spline Wavelets in $1-d$, degree $p=1$.

Sparse Tensor Product Space
(Zenger 1990, Griebel \& Bungartz Acta Numerica 2004)

Monte Carlo IV - Sparse Monte Carlo FEM

Sparse Tensor Product MC estimate of $\mathcal{M}^{k} u$:

$$
\hat{E}_{\mathcal{M}^{k} u}^{M, L}:=\frac{1}{M} \sum_{j=1}^{M} \widehat{P}_{L}^{(k)}\left[u_{L}\left(\omega_{j}\right) \otimes \ldots \otimes u_{L}\left(\omega_{j}\right)\right] \in V_{L}^{(k)}
$$

Work:

$$
M \times O\left(N_{L}\left(\log _{2} N_{L}\right)^{k-1}\right) \quad \text { operations and } N_{L}\left(\log _{2} N_{L}\right)^{k-1} \quad \text { memory }
$$

Theorem 6

Assume $0<\alpha \leq 1$ and

$$
f \in L^{k}\left(\Omega, Y_{s}\right) \cap L^{\alpha k}\left(\Omega, V^{\prime}\right) \text { for some } 0 \leq s<s_{0}
$$

Then

$$
\mathcal{M}^{k} u \in X_{s} \otimes \ldots \otimes X_{s}=: X_{s}^{(k)}
$$

and there is $C(k)>0$ such that for all $M \geq 1, L \geq L_{0}$ and all $0<\varepsilon<1$ holds

$$
\begin{gathered}
P\left(\left\|\hat{E}_{\mathcal{M}^{k} u}^{M, L}-\mathcal{M}^{k} u\right\|_{V^{(k)}}<\lambda\right) \geq 1-\varepsilon \\
\text { with } \lambda=C(k)\left[\Phi\left(s, N_{L}\right)\left(\log N_{L}\right)^{(k-1) / 2}\|f\|_{L^{k}\left(\Omega, Y_{s}\right)}^{k}+\varepsilon^{-1 / \alpha} M^{-(1-1 / \alpha)}\|f\|_{L^{\alpha k}\left(\Omega, V^{\prime}\right)}^{k}\right] .
\end{gathered}
$$

Sparse Tensor Product FEM

Idea:
Compute $\mathcal{M}^{k} u$ directly, without MC

Proposition 7

Assume A satisfies (4), (5) and $f \in L^{k}\left(\Omega, V^{\prime}\right)$ for $k>1$.
Then

$$
\begin{equation*}
(A \otimes \ldots \otimes A) Z=\mathcal{M}^{k} f \tag{10}
\end{equation*}
$$

has a unique solution $Z \in V^{(k)}$ and

$$
Z=\mathcal{M}^{k} u
$$

For $f \in L^{k}\left(\Omega, Y_{s}\right), s>0$, holds

$$
\left\|\mathcal{M}^{k} u\right\|_{X_{s} \otimes \ldots \otimes X_{s}} \leq C_{k, s}\left\|\mathcal{M}^{k} f\right\|_{Y_{s} \otimes \ldots \otimes Y_{s}}, \quad 0 \leq s<s_{0}, \quad k \geq 1
$$

Regularity of $\mathcal{M}^{k} u$ in spaces of mixed highest derivative!

Sparse Galerkin FEM

Since A may be indefinite, use

$$
\hat{V}_{L, L_{0}}^{(k)}:=\hat{V}_{L+L_{0}}^{(k)} \cap V_{L}^{(k)}
$$

instead of $\hat{V}_{L}^{(k)}$ where L_{0} is fixed as $L \rightarrow \infty$.

$$
\begin{equation*}
\text { find } \quad \widehat{Z}_{L} \in \widehat{V}_{L+L_{0}}^{(k)} \quad \text { such that } \quad\left\langle A^{(k)} \widehat{Z}_{L}, v\right\rangle=\left\langle\mathcal{M}^{k} f, v\right\rangle \quad \forall v \in \widehat{V}_{L+L_{0}}^{(k)} \tag{11}
\end{equation*}
$$

N.B. that

$$
\hat{V}_{L}^{(k)} \subset \hat{V}_{L, L_{0}}^{(k)} \subset \hat{V}_{L+L_{0}}^{(k)}
$$

Assume (4), (5) with

$$
T: V \rightarrow Y_{\delta} \quad \text { continuously for some } \quad \delta>0
$$

Assume also the approximation property and $f \in L^{k}\left(\Omega, Y_{s}\right), s>0, k \geq 1$.
Then there exists L_{0} and $c_{S}>0$ such that for all $L \geq L_{0}$

$$
\begin{equation*}
\inf _{0 \neq u \in \widehat{V}_{L, L_{0}}^{(k)}} \sup _{0 \neq v \in \widehat{V}_{L, L_{0}}^{(k)}} \frac{\left\langle A^{(k)} u, v\right\rangle}{\|u\|_{V^{(k)}}\|v\|_{V^{(k)}}} \geq \frac{1}{c_{S}}>0 . \tag{12}
\end{equation*}
$$

In the case $T=0$ this holds with $L_{0}=0$.

Theorem 8

Then for all $L \geq k L_{0}$ sparse Galerkin approximation \widehat{Z}_{L} of $\mathcal{M}^{k} u$ is uniquely defined and

$$
\left\|\mathcal{M}^{k} u-\widehat{Z}_{L}\right\|_{V \otimes \ldots \otimes V} \leq C(k) \Phi\left(s, N_{L}\right)\left(\log N_{L}\right)^{(k-1) / 2}\|f\|_{L^{k}\left(\Omega, Y_{s}\right)}, \quad 0 \leq s<s_{0}
$$

\widehat{Z}_{L} can be computed with $O\left(N_{L}\left(\log N_{L}\right)^{m}\right)$ work and memory.

Note: Tensor product Galerkin FEM gives

$$
\left\|\mathcal{M}^{k} u-Z_{L}\right\|_{V \otimes \ldots \otimes V} \leq C(k) \Phi\left(s, N_{L}\right)^{1 / k}\|f\|_{L^{k}\left(\Omega, Y_{s}\right)}, \quad 0 \leq s<s_{0}
$$

in $O\left(N_{L}\right)$ memory and work.

Conclusions

- Monte-Carlo Galerkin FEM: framework, convergence analysis
- Sparse Galerkin FEM: regularity in anisotropic spaces; sparse tensor product spaces
- Given data statistics, get solution statistics by deterministic computation
- trade stochasticity and MC for high-dimensionality + deterministic FEM
- Use sparse tensor products of wavelet spaces to avoid $O\left(N_{L}^{k}\right)$ complexity
- Fast Matrix Vector Multiplication (Sch. \& Todor: Numer. Math. 2003)
- a-priori and a-posteriori error estimates, adaptivity
\rightarrow framework of Cohen, Dahmen, DeVore in tensor product Besov spaces (Nitsche 2004)

$$
\mathcal{M}^{k}(u) \in B_{q}^{\alpha}\left(L_{q}(D)\right) \otimes_{q} \ldots \otimes_{q} B_{q}^{\alpha}\left(L_{q}(D)\right)
$$

for arbitrarily large α with

$$
q=[\alpha / 2+1 / 2]^{-1}<1 \quad \text { indep. of } \quad k
$$

- Problems with stochastic boundary Γ (Harbrecht, R. Schneider, and CS. 2006)
- Problem with stochastic coefficients (Todor \& CS. 2006)

