Monte-Carlo Methods for transport problems and kinetic equations

Remi Sentis (CEA/Bruyeres)

Introduction
Principle of the classical MC method for transport problems. + (Probabilist Interpretation)
Limit of the method ( transport problem in collisonal media)

Symbolic Monte-Carlo Method



1 Introduction

Evaluation of I = /f(a:)p(a:)da;

According to the law of large numbers

1
I=Bf(X)) =+ > (X))
j=1,N
X, are realizations of the r. v. X whose law is p.
Particle technique

Representation of a function u(¢, x) by particles

u(t, x)dx ~ Z w;d x,)(dr)

J



Toy problem .

let g probability density and u = u(t, z) verifying

s, 0 =
8_?; + 8_(§u) =0, u(0,.) = g, +boundary cond v = 0, (B(z). 7. > 0) (1)
2

Evaluation of M = /qb(z)u(t, z)dz for ¢ indicatrix f.

define the flow Z7

d —
S 2i = B(Z),  Zig=-
d — .
Denote Z; the r.p. %Zt = B(Z,), whose law Zi—g is ¢g(.)dz

Proposition. (proba. interpretation) For T" positive :
[ 6@tz = [ o2)e(Zi)dz = B, (6(20)

Proof. Let ¢ verifying :

dp — Oy

5 B.g =0, o(T) = ¢, then : %(gp(t, zZ7)) =0. But %(/ e(t)u(t)) =0



2 Principle of the classical MC method: Proba. Inter-

pretation

BEvolution transport equations

2—?+v.%+ru—Ku = 0,
u(0,.) = G
ulgp (x,v) =  h(x,v), ve Z={vn, >0}

where K is conservative (collision operator)

Ku(x,v) = /Vax(v’) ke(v',v) u(z,v) dv' — oz(v) u(z,v)

such that [k(v',v)dv = 1.

Set of velocity V provided with dv s.t. [, dv =1



B Stationary transport equations .

Let u = u(x,v) be solution of

v.Vu+ru — Ku
ulgp (x,v) = h(x,v), Yo e Zf

|
.



BEvolution equations (2)

0
U —> (v.a — K)u is associated to the processus X (t), V(t)
x

characterized by:

eBetween the jump of V :

%X(t) = V(t), V' constant

e The stopping time 7 is such that
Ppeltt+dt]) = e XVig(X, V) dt

e At this stopping time n, the velocity jump from V(n—) to V(n)
according to prob. law k(X(n), V(n_),w) dw

Remark :

o1 m. f. time, vo ! m. f. p.



Proposition (probabilist interpretation).

Assume that g > O, / /g(w,v)dwdv =1
DJYy

For any test fonction ¢ € Cy(D x V),
< ut, ) >= // u(t, z,v)e(x,v)drdv =
Dy

= E, [go(X(t),V(t)) exp(— /OtT(Xa V) dC)]

E, = expectation knowing the law of (X (0), V(0)) is g(, )dzdv.



2.1 Principle of the method

BPb without boundary conditions

* Generation of N processes, ind. equid. : (Xp,V,),p=1,...,N .
knowing that

0

—Xp = Vp,

ot
V) jump process

at time t = 0, (Xp, Vp) distribu a. to g

* Initialization of the weights wg s.t. in D

N
ng: 1, sup|wg| — 0
p=1

* Each weight solves

0
awp + wpr(Xp, Vp) = 0.



B Corollary. N — oo, we get

ON(t) = ) w(t) Sxm(de) Sy(dv)
p=1,..N

< PN > — L u(t,.)p >



2.2 Implentation of the method.

* Discretization into sub-domains D’ such that the coef. are constant

* In each sub-domain D’ , initialize the weights wg s.t.

> wg:/,/Vg(a:,v)dazdv

p/X,ED’

X,(0), V,(0) generated a. to 9(.,.)

* Tracking of the particles.

0
aXp =V,
Vp Jump process

* Compute the outgoing time 7, out of D’ and the collision time 7,,.
If n,, < 7p, velocity jumps a. to the law k.

* The weight varies a. to

o0
awp + wpr(Xyp, Vp) = 0.

D/



* Tally of the weights of the particles and evaluate at final time

wp(t)p(Xp(t), V(t))



.Boundary condition.

Assume V' with spherical symmetry
Consider transport equation with A independent of wv.

Particles are generated on each face I' of the boundary in the half-sphere
ZT =w /vnr >0

s. t. the prob. law of Q = v/|v| is :

1

Q.nrdQ
[, Qmrdy "

i.e. for u = Q.nr on [0, 1] , the prob. law is (Lambert law)
2udp.

the azymutal angle is equidistributed.

For a general function h(u) , the proba. law is ph(u) for each particle.



3 Limit of the method

Monte-Carlo algorithms are non efficient if

[v]

A =—<K Lepar, Lcphar char. length, o char. value

o

The Monte-Carlo method becomes prohibitive (to much jumps in each cell)

Then diffusion approximation is necessary

Hypothesis: k is symmetric, V' spherical symmetry and

e = A/ Lehar, r<L o, Tr=E¢ro,

Ku = o(x)Mu, o= ? Mu(v) = /Vk(v’, v)u(v)dv — u(v)

::/V.(v)dv



Let u. be the solution of

v.Vues + erous — @Mug = ¢fo
€
uelop (x,v) = haz(v), Yv € Z,

Theorem (classical result 71960)

If h(x,.) independent of v ; when ¢ — 0, we get u.(x,v) — U(xz) where

1 -
roU — V.(37VU) = fo, with boundary cond. U(z)|r = hy
0

So the behavior of the solution of (2) is like a diffusion one.
Remark. If h(x,.) depends on v, there exists boundary layers (Chandrasekhar)

Transport problem in a zoom region near a boundary point xp. (V is the sphere, u = v.ng, ).

r — Ty — Ty

-najb and ’11,5(33) UO('CE) + ¢$b(

Set y =

Mg,y 1) + UL + Uy + ...



¢ is a boundary layer, solution to a transport equation.
Theorem ( G. Papanicolaou 71975, R.S. 1981).

The solution wu,. satisfies u:(x,v) ~ U(x)
1 -
roU — V.(3—VU) = fo, with boundary cond. U(z)|r = C(hz)
00

where the operator C' is defined by the way. Let ¢ (y, i) be the unique bounded solution of

u§¢ — My = 0 with y € [0, +o0]
Yy

Y(0,u) = g(u), on Z*

then there exists a fonction H (Chandrasekhar) such that

1
fim 0.1 = Ola) = [ o) H()n m



4 The symbolic Monte-Carlo method

Stationary problem with» >0. (g=0+71)

QVu-+qu = ou
w(z,Q) = h, onZ".
Denote now v = v(x, 2), the solution
QVv+qgv = 0
v(z,Q) = h, onZ"

For each cell C}, denote (; the solutions

QV{ +q(; = qlg
¢; = 0Oon Z+



We introduce the coefficients M,

and the data

We can check that

Proposition.

The linear system

Zijj S O

Gty — ¥ Mijd; = oiVi
J



has a unique solution (¢;). If we set
n(z, Q) =) Cilx, Q)
k

then v + 71 is a good approximation of u, when dx tends to 0.



Sketch of the proof
The matrix of the linear system is diagonal dominent.
Since the Vj are positive, the solution (¢,) exits, is positive.

. m is solution to

QVn+qn = > loaqe,
k

n = 0OonZt

According to the definition of ¢ , we get

Z 1o,qd, = Z 1c,.01Vi + Z Z ].CkO'k/ C’J(az) \C’ | Z 1o,k (’U +7) (:13) \Ck|

Thus  (QQV +¢q)(v+n) = Z 1o.0h / (v + n)(x) \c - O
Remark : Ej\ﬁ.ndfy(az) = qk/ @-dm, = My;|Ck| = Tk @.ndq/(m)
oC, Cy dk Joc,

this corresponds to the particles born in C; , absorbed in cell Cf.



Numerical method .
1. Free fly. We first generate particles on the boundary

Track them according to a free fly technique (without coll.)

2. Evaluation of the coefficients M

0

For each C}, generate particles (Xj,€2p) such that their weights w,

> w)=1(Cjlg
p

Track these particles according to free fly without collisions

Estimation of M}, by using the flux on the boundary of Cj,

MiglCrl = 75 37 (wif, — wis) (7)

Uk p,born in j

wli)”ck and wy'¢d, = weights of p when it goes in and out Cj. Thus (6) holds.

3. Finaly, we solve the linear system

Gt — Y Mijo; = orVi
J



The method is very adaptable. Example of generalization

QVu+ru+o(u—u)+7u = 760
w(z,Q) = h, onZ".
0 -
—60 + 710 —Tu— V(AVO) = 0.

ot
+B.C for 6



5 Conclusion

The Monte Carlo method are very adaptable, powerfull

but are prohibitive in collisional domain.

+++++
The Symbolic MC method for stationary problems is a variant of a well known method in neutronics :
the collision probability method.
+++++

The mathematical analysis allows to adapt this method to other situations for example to radiative transfer
problems

and to perform coupling with other methods.



