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Introduction

Principle of the classical MC method for transport problems. + (Probabilist Interpretation)

Limit of the method ( transport problem in collisonal media)

Symbolic Monte-Carlo Method



.

1 Introduction

Evaluation of I =
Z
f(x)p(x)dx

According to the law of large numbers

I = E(f(X)) ' 1

N

X
j=1;N

f(Xj)

Xi are realizations of the r. v. X whose law is p:

Particle technique

Representation of a function u(t; x) by particles

u(t; x)dx '
X
j

wj�Xj(t)(dx)



Toy problem .

let g probability density and u = u(t; z) verifying

@u

@t
+

@

@z
:(
�!
Bu) = 0; u(0; :) = g; +boundary cond u = 0; (

�!
B (z):�!n z > 0) (1)

Evaluation of M =

Z
�(z)u(t; z)dz for � indicatrix f.

de�ne the �ow Zzt
d

dt
Zzt =

�!
B (Zzt ); Zzt=0 = z

Denote Zt the r.p.
d

dt
Zt =

�!
B (Zt); whose law Zt=0 is g(:)dz

Proposition. (proba. interpretation) For T positive :Z
�(z)u(T; z)dz =

Z
g(z)�(ZzT )dz = Eg (�(ZT ))

Proof. Let ' verifying :

�@'
@t
��!B:@'

@z
= 0; '(T ) = �; then :

@

@t
('(t; Zzt )) = 0: But

@

@t
(

Z
'(t)u(t)) = 0



2 Principle of the classical MC method: Proba. Inter-

pretation

�Evolution transport equations

@u

@t
+ v:

@u

@x
+ ru�Ku = 0; (2)

u(0; :) = G

uj@D (x; v) = h(x; v); v 2 Z+x = fv:nx > 0g (3)

where K is conservative (collision operator)

Ku(x; v) =

Z
V
�x(v

0) kx(v
0; v) u(x; v0) dv0 � �x(v) u(x; v)

such that
R
k(v0; v)dv = 1:

Set of velocity V provided with dv s.t.
R
V dv = 1



� Stationary transport equations .

Let u = u(x; v) be solution of

v:ru+ ru�Ku = f

uj@D (x; v) = h(x; v); 8v 2 Z+x



�Evolution equations (2)

u 7�! (v:
@

@x
�K)u is associated to the processus X(t); V (t)

characterized by:

�Between the jump of V :

@

@t
X(t) = V (t); V constant

� The stopping time � is such that
P (� 2 [t; t+ dt]) = e��(X;V )t�(X;V ) dt

� At this stopping time �; the velocity jump from V (��) to V (�)
according to prob. law k(X(�); V(��); w) dw

Remark :

��1 m. f. time, v��1 m. f. p.



Proposition (probabilist interpretation).

Assume that g � 0;
Z
D

Z
V
g(x; v)dxdv = 1

For any test fonction ' 2 Cb(D � V);

� u(t; :)'�=
Z Z

DV
u(t; x; v)'(x; v) dx dv =

= Eg

�
'(X(t); V (t)) exp(�

Z t

0

r(X;V ) d�)

�

Eg = expectation knowing the law of (X(0); V (0)) is g(; )dxdv.



2.1 Principle of the method

�Pb without boundary conditions

* Generation of N processes, ind. equid. : (Xp; Vp); p = 1; :::; N .

knowing that

@

@t
Xp = Vp;

Vp jump process

at time t = 0; (Xp; Vp) distribu a. to g

* Initialization of the weights w0p s.t. in D

NX
p=1

w0p = 1; sup jw0pj ! 0

* Each weight solves
@

@t
wp + wpr(Xp; Vp) = 0:



� Corollary. N !1; we get

�N(t) =
X

p=1;::N

wp(t) �Xp(t)(dx) �Vp(t)(dv)

� �N(t)'� ! � u(t; :)'�



2.2 Implentation of the method.

* Discretization into sub-domains D0 such that the coef. are constant

* In each sub-domain D0 , initialize the weights w0p s.t.X
p=Xp2D0

w0p =

Z
D0

Z
V
g(x; v)dxdv

Xp(0); Vp(0) generated a. to g(:; :)jD0

* Tracking of the particles.

@

@t
Xp = Vp;

Vp jump process

* Compute the outgoing time �p out of D0 and the collision time �p.

If �p < �p; velocity jumps a. to the law k:

* The weight varies a. to
@

@t
wp + wpr(Xp; Vp) = 0:



* Tally of the weights of the particles and evaluate at �nal time

wp(t)'(Xp(t); Vp(t))



.Boundary condition.

Assume V with spherical symmetry

Consider transport equation with h independent of v:

Particles are generated on each face � of the boundary in the half-sphere

Z+ = v = v:n� > 0

s. t. the prob. law of 
 = v=jvj is :

1R
Z+ 
0:n�d
0


:n�d


i.e. for � = 
:n� on [0; 1] , the prob. law is (Lambert law)

2�d�:

the azymutal angle is equidistributed.

For a general function h(�) , the proba. law is �h(�) for each particle.



3 Limit of the method

Monte-Carlo algorithms are non e¢ cient if

� =
jvj
�
� Lchar; Lchar char. length, � char. value

The Monte-Carlo method becomes prohibitive (to much jumps in each cell)

Then di¤usion approximation is necessary

Hypothesis: k is symmetric, V spherical symmetry and

" = �=Lchar; r � �, r = "r0;

Ku = �(x)Mu; � =
�0

"
Mu(v) =

Z
V
k(v0; v)u(v0)dv0 � u(v)

e� = Z
V
�(v)dv



Let u" be the solution of

v:ru" + "r0u" �
�0

"
Mu" = "f0

u"j@D (x; v) = hx(v); 8v 2 Zx

Theorem (classical result ~1960)

If h(x; :) independent of v ; when "! 0; we get u"(x; v)! U(x) where

r0U �r:(
1

3�0
rU) = ef0 , with boundary cond. U(x)j� = hx

So the behavior of the solution of (2) is like a di¤usion one.

Remark. If h(x; :) depends on v; there exists boundary layers (Chandrasekhar)

Transport problem in a zoom region near a boundary point xb: (V is the sphere, � = v:nxb ).

Set y =
x� xb

"
:nxb and u"(x) = U0(x) + �xb(

x� xb

"
:nxb; �) + "u1 + "2u2 + ::::



� is a boundary layer, solution to a transport equation.

Theorem ( G. Papanicolaou ~1975, R.S. 1981).

The solution u" satis�es u"(x; v) ' U(x)

r0U �r:(
1

3�0
rU) = ef0 , with boundary cond. U(x)j� = C(hx)

where the operator C is de�ned by the way. Let  (y; �) be the unique bounded solution of

�
@

@y
 �M = 0 with y 2 [0;+1] (4)

 (0; �) = g(�); on Z+

then there exists a fonction H (Chandrasekhar) such that

lim
y!1

 (y; �) = C(g) =

Z 1

0

g(�)H(�)�
d�

2
: �



4 The symbolic Monte-Carlo method

Stationary problem with r > 0 . ( q = � + r )


:ru+ qu = �eu
u(x;
) = h; on Z+:

Denote now v = v(x;
); the solution


:rv + qv = 0

v(x;
) = h; on Z+

For each cell Cj; denote �j the solutions


:r�j + q�j = q1Cj
(5)

�j = 0 on Z+



We introduce the coe¢ cients Mkj;

Mkj =

Z
Ck

�k e�j(x) dxjCkj
and the data

Vk =

Z
Ck

ev(x) dx
jCkj

We can check that

�jMkj � �k (6)

Proposition.

The linear system

qk�k �
X
j

Mkj�j = �kVk



has a unique solution (�j): If we set

�(x;
) =
X
k

�k(x;
)�k

then v + � is a good approximation of u, when �x tends to 0.



Sketch of the proof

The matrix of the linear system is diagonal dominent.

Since the Vj are positive, the solution (�j) exits, is positive.

. � is solution to


:r� + q� =
X
k

1Ck
q�k

� = 0 on Z+

According to the de�nition of �:; we get

X
k

1Ck
q�k =

X
k

1Ck
�kVk +

X
k

X
j

1Ck
�k

Z
Ck

e�j(x) dxjCkj�j =Xk 1Ck
�k

Z
Ck

(ev + e�) (x) dx
jCkj

Thus (
:r+ q)(v + �) =
X
k

1Ck
�k

Z
Ck

^(v + �)(x)
dx

jCkj
: �

Remark :
Z
@Ck

g�j
:nd(x) = qk

Z
Ck

e�jdx; )MkjjCkj =
�k

qk

Z
@Ck

g�j
:nd(x)
this corresponds to the particles born in Cj , absorbed in cell Ck:



Numerical method .

1. Free �y. We �rst generate particles on the boundary

Track them according to a free �y technique (without coll.)

2. Evaluation of the coe¢ cients M::

For each Cj, generate particles (Xp;
p) such that their weights w0pX
p

w0p = jCjjqj

Track these particles according to free �y without collisions

Estimation of Mkj by using the �ux on the boundary of Ck

MkjjCkj =
�k

qk

X
p;born in j

�
winp;Ck

� woutp;Ck

�
(7)

winp;Ck
and woutp;Ck

= weights of p when it goes in and out Ck. Thus (6) holds.

3. Finaly, we solve the linear system

qk�k �
X
j

Mkj�j = �kVk



The method is very adaptable. Example of generalization


:ru+ ru+ �(u� eu) + �u = ��

u(x;
) = h; on Z+:
@

@t
� + �� � �eu�r(�r�) = 0:

+B:C for �



5 Conclusion

The Monte Carlo method are very adaptable, powerfull

but are prohibitive in collisional domain.

+++++

The Symbolic MC method for stationary problems is a variant of a well known method in neutronics :

the collision probability method.

+++++

The mathematical analysis allows to adapt this method to other situations for example to radiative transfer
problems

and to perform coupling with other methods.


