
Formulation and Stochastic Galerkin Methods for
Stochastic Partial Differential Equations III

Hermann G. Matthies
with Andreas Keese

Institute of Scientific Computing
Technische Universität Braunschweig, Germany

wire@tu-bs.de
http://www.wire.tu-bs.de

2

Repetition of Second Summary

Stochstic Galerkin methods work.

Galerkin procedure is numerically stable ⇒ convergence.

Convergence rates seemingly only with regularity.

Stochastic calculations produce huge amounts of data, which is

expensive to operate on and to store.

Results a priori live in very high dimensional spaces.

They have a natural tensor product structure.

TU Braunschweig Institute of Scientific Computing

3

Overview III

1. Approximation Theory

2. Computations for Stochastic Galerkin (linear)

3. Computations for Stochastic Galerkin (non-linear)

4. Stochastic Collocation for PCE

5. Time Evolution Problems

6. Sparse Tensor Product Approximation

TU Braunschweig Institute of Scientific Computing

4

Approximation Theory

• Stability of discrete approximation under truncated KLE and PCE.

Matrix stays uniformly positive definite.

• Convergence follows from Céa’s Lemma.

• Convergence rates under stochastic regularity in stochastic Hilbert

spaces—stochastic regularity theory?.

• Error estimation via dual weighted residuals possible.

Theorem: Let p > 0, r > 1, |ρ| ≤ 1. Let Pk,m be projection onto Sk,m.

∀R ∈ (S)ρ,−p ‖R− Pk,m(R)‖2
ρ,−p ≤ ‖R‖2

ρ,−p+r c(m, k, r)
2,

where c(m, k, r)2 = c1(r)m1−r + c2(r)2−kr. But dim Sk,m grows too

quickly with k and m. Sparser spaces and error estimates needed.

TU Braunschweig Institute of Scientific Computing

5

Equations for Linear Stochastic Galerkin

In what follows we use orthonormal Ĥα(θ) = Hα(θ)/
√
α! instead of

Hα(θ). With f (γ) := E
(
Ĥγf(θ)

)
and f = [f (0), . . . ,f (γ), . . . ,f (λ)]:∑

α

∑
β

∑

ξ(α)
 E

(
ĤαĤβĤγ

)
︸ ︷︷ ︸

=:∆
(α)
β,γ

∫
∇N(x)κ g(x)∇N(x)T dx︸ ︷︷ ︸

K

u(β) = f (γ)

E
(
ĤαĤβĤγ

)
= ∆(α)

β,γ = C
(α)
βγ

√
α!
β!γ!

Equations and u, f have tensor product structure (storage and use).

Ku =
∑

∑
α

ξ(α)
 ∆(α) ⊗K u = f

TU Braunschweig Institute of Scientific Computing

6

Computations for Linear Iterative Solution

Ku =

∑

∑
α

ξ(α)
 ∆(α) ⊗K

 u = f

With preconditioner P = I ⊗K0 a simple iteration is
k+1u = ku + P−1(f −K ku).

Of course P−1 is only a symbolic notation.

Which means for ‘material’ κg(x) and each β compute the ‘residuum’
k
 w

(β) := K
ku(β) and then k+1u = ku + kv with

kv(γ) = K−1
0 (f (γ) −

∑
α,β,

k
 w

(β)ξ(α)
 ∆(α)

β,γ)

This is one ‘preconditioner solve’ of the deterministic code.

TU Braunschweig Institute of Scientific Computing

7

Interlude: Computation of Moments from PCE

Discrete version of PCE of u(θ):

u(θ) = ū + ũ(θ) = ū +
∑
γ 6=0

u(γ)Ĥγ(θ)

Let M
(k)
u = E

 k times︷ ︸︸ ︷
ũ(θ)⊗ . . .⊗ ũ(θ)

 = E
(
ũ⊗k

)
, totally symmetric,

especially M
(1)
u = ū, M

(2)
u = Cu =

∑
γ 6=0 u(γ) ⊗ u(γ).

It results that multi-point correlation

M (k)
u = E

(
ũ⊗k

)
=

∑
γ(1),...,γ(k) 6=0

E

 k∏
=1

Ĥγ()
(θ)

u(γ(1))⊗ . . .⊗u(γ(k)).

TU Braunschweig Institute of Scientific Computing

8

Non-Linear Equations

Example: Use κ(x, u, ω) = a(x, ω) + b(x, ω)u2, and a, b random.

Space discretisation generates a non-linear equation

A(θ,u(θ)) = A(θ,
∑

β u(β)Ĥβ(θ)) = f(θ). Projection onto PCE:

a[u] = [. . . ,E

Ĥα(θ)A(θ,
∑

β

u(β)Ĥβ(θ))

 , . . .] = f = FϕΦT

Expressions in a need high-dimensional integration (in each iteration),

e.g. Monte Carlo or Smolyak (sparse grid) quadrature:

a(α) = E
(
Ĥα(θ)A(θ,u(θ))

)
≈
∑Z

z=1wzĤα(θz)A(θz,u(θz))

The residual equation to be solved is

r(u) := f − a[u] = 0.

TU Braunschweig Institute of Scientific Computing

9

Solution of Non-Linear Equations

Assume solver for deterministic problem: r(u) = 0:
k+1u = ku + kw = ku + S(ku, r(ku)) =: T (ku, r(ku))

Then stochastic Galerkin non-linear iteration may be
k+1u = ku + kw = ku + S(ku, r(ku)) =: T(ku, r(ku))

with

S(ku, r(ku)) = [S(ku(0), r(0)(ku)) . . . , S(ku(β), r(β)(ku)), . . .]

The only interaction with the deterministic solver is

• computing residua for realisations θz

• using iteration for those residua.

TU Braunschweig Institute of Scientific Computing

10

Solution of Non-Linear Equations II

A quasi-Newton method may accelerate convergence
k+1u = ku + kw, kw = Hk(r(ku))

Hk(r) = S(ku, r) +
k∑

=1

(appT
 r + bqqT

 r)

Tensors p and q computed from residuum and last increment. Notice

tensor products of (hopefully sparse) tensors.

Needs pre-conditioner S for good convergence: May use linear solver as

described before, i.e.

S = I ⊗K0.

TU Braunschweig Institute of Scientific Computing

11

Stochastic Collocation

As the {Ĥα(θ)} are an orthonormal basis, the PCE of

u(θ) =
∑

β

u(β)Ĥβ(θ)

may be formally computed from simple projections:

u(β) = 〈Ĥβ(θ),u(θ)〉 = E
(
Ĥβ(θ)u(θ)

)
=

E

(
Ĥβ(θ)

∑
α

u(α)Ĥα(θ)

)
=
∑
α

u(α)E
(
Ĥβ(θ)Ĥα(θ)

)
=
∑
α

u(α)δα,β.

Hence u(β) = E
(
Ĥβ(θ)u(θ)

)
≈
∑Z

z=1wzĤβ(θz)u(θz).
This only needs sample solutions u(θz) and works

both for linear and non-linear problems.

TU Braunschweig Institute of Scientific Computing

12

Work Count

Stochastic collocation faces same

stability problems as was previously explained for Monte Carlo.

Assume N deterministic and M stochastic variables,

i.e. u is N ×M .

Assume that for the stochastic Galerkin method we need J iterations,

then the total work is Z · J residua +M · J iterations.

Assume that for the stochastic collocation method we need I iterations

on average, then the total work is Z · I residua +Z · I iterations.

Often J slightly larger than I, but Z is much larger than M .

Often iterations cost more than residua.

TU Braunschweig Institute of Scientific Computing

13

Time Dependent Problems

For a time dependent problem with u ∈ U and f ∈ F (usually = U∗)

u̇+A[u] = f(t),

if now either the (possibly non-linear) operator or the rhs f are

stochastic, the stochastic solution may be sought in a space U ⊗S

If this evolution problem is normally space-discretised via

u(x, t) =
∑

k uk(t)Nk(x) to give ODEs for the [. . . , uk(t), . . .]T = u(t):

u̇ + A[u] = f(t),

the stochastic ansatz u(t,θ) =
∑

α u(α)(t)Ĥα(θ) gives for

u(t) = [. . . ,u(α)(t), . . .] many more ODEs:

u̇ + a[u] = f(t),

TU Braunschweig Institute of Scientific Computing

14

What is Wrong with the pure PCE?

Remember already for data field κ(x, ω)
a KLE was additionally used to have fewer terms.

For a solution u = [. . . ,u(α), . . .] there are too many PCE terms,

all stochastically relevant information is encoded optimally in

Karhunen-Loève expansion (KLE).

When only a few vectors u` are needed in the end,

why compute all the u(α) in between?

Stochastic Galerkin may be adapted (this is a kind of model reduction)

to work on much less information.

TU Braunschweig Institute of Scientific Computing

15

Simpler Case of Additive Noise

Assume first that K is not random: ∀γ ∈ Jk,m satisfy:∑
β∈Jk,m

E
(
Ĥγ(θ)Ĥβ(θ)

)
Ku(β) = Ku(γ) = E (f(θ)Hγ(θ)) =: f (γ)

There are too many f (γ). Use discrete version of KLE of f(θ):

f(θ) = f̄ +
∑

`

ϕ` φ`(θ)f ` = f̄ +
∑

`

∑
γ

ϕ` φ
(γ)
` Ĥγ(θ)f `.

In particular f (γ) =
∑

`ϕ` φ
(γ)
` f `. The SVD of f(θ) is

with Φ = (φ(γ)
`), ϕ = diag(ϕ`), and F = [. . . ,f `, . . .];

f = [. . . ,f (γ), . . .] = FϕΦT =
∑

`

ϕ` v`φ
T
` .

TU Braunschweig Institute of Scientific Computing

16

Solution for Additive Noise

Observe Kū = f̄ , and set V := K−1F (i.e. ∀` solve Kv` = f `),

then u(θ) = ū + V ϕΦTH = ū +
∑

`ϕ` v`φ
T
` H

But this is not the SVD of u(θ)! This via eigenproblem:

Covariance Cf := E
(
f̃(θ)⊗ f̃(θ)

)
= Fϕ2F T . Hence

Cu := E (ũ(θ)⊗ ũ(θ)) = K−1Fϕ2(K−1F)T = V ϕ2V T

Even fewer terms needed with SVD of u(θ) from

CuU = (V ϕ2V T)U = Uυ2

Sparsification achieved for u via SVD with small m:

u = ū + [. . . ,um] diag(υm)(y(β)
m)TH = ū + UυY TH,

with Y T := truncate (υUTV ϕ−1ΦT).

TU Braunschweig Institute of Scientific Computing

17

Example: Computation of Moments

Let M
(k)
f = E

 k times︷ ︸︸ ︷
f̃(ω)⊗ . . .⊗ f̃(ω)

 = E
(
f̃
⊗k
)
, totally symmetric,

and M
(1)
f = f̄ , M

(2)
f = Cf .

KLE of Cf is Cf =
∑

`ϕ` f `f
T
` =

∑
`ϕ` f ` ⊗ f `.

For deterministic operator K, just compute Kv` = f `, and then

Kū = f̄ , and M
(2)
u = Cu = E

(
ũ⊗k

)
=
∑

`ϕ` v` ⊗ v`.

As ũ(θ) =
∑

`

∑
αϕ` φ

(α)
` Hα(θ)v`, it results that multi-point correlation

M (k)
u =

∑
`1≤...≤`k

k∏
m=1

ϕ`m

∑
α(1),...,α(k)

k∏
n=1

φ
(α(n))

`m
E
(
Hα(1)

· · ·Hα(k)

)
v`1 ⊗ . . .⊗ v`k

.

TU Braunschweig Institute of Scientific Computing

18

Sparsification

Goal: As with additive noise, compute only with f `, u` from SVD.

Start iteration with tensor product of low rank L.

f = [. . . ,f (γ), . . .] = FϕΦT =
∑

`

ϕ` v`φ
T
` .

At each iteration k, rank of iterative approximation uk will increase by

number of terms in matrix sum.

In each iteration, perform a SVD of uk and reduce rank again to L.

Resulting iteration converges to SVD = discrete KLE of u.

TU Braunschweig Institute of Scientific Computing

19

Operation Count

Ku =
∑

∑
α

ξ(α)
 ∆(α) ⊗K u = f

Assume sum in K has K terms, u and f have size N ×M ,

and f = [. . . ,f (γ), . . .] = FϕφT =
∑

`ϕ` v`φ
T
`

has L� N,L�M terms.

Each application of K on full uk needs K ×M K-multiplications plus

K ×N ∆-multiplications.

Each application of K on low rank tensor product uk needs K × L

K-multiplications plus K × L ∆-multiplications, which is much less.

Storage is reduced from N ×M to L× (N +M).

TU Braunschweig Institute of Scientific Computing

20

Integration Rules

For Monte Carlo (MC), the points θz are random according to measure

Γ , and weights are wz = 1/Z.

For Quasi Monte Carlo (QMC), the points θz are non-random according

to number-theoretic low discrepancy series , and weights are still

wz = 1/Z.

For Product Gauss (full tensor product) rules the points θz and weights

wz come from one dimensional rules.

For sparse grid Smolyak rules, the points θz and weights wz are known,

they come from combination of different rules in different dimensions.

TU Braunschweig Institute of Scientific Computing

21

High-Dimensional Integration

We want E (ψ(θ)) =
∫

Θm

ψ(θm) dΓm(θm) =∫
θ1

· · ·
∫

θm

ψ(θ1, . . . , θm)dΓ1(θ1) · · · dΓ1(θm)

Expected error ε:

Pure Monte Carlo (MC) has ε = O(‖ψ‖2Z
−1/2)

Quasi Monte Carlo (QMC) has ε = O
(
‖ψ‖BVZ

−1(logZ)m
)

Quadrature-formulas (integrand in Cr(Θm):

Full Product k-point Gauss ε = O(Z−(2r−1)/m) with Z = O
(
km
)

Sparse Grid Smolyak ε = O(Z−r(logZ)(m−1)(r+1)) with Z = O
(
2k

k!m
k
)

TU Braunschweig Institute of Scientific Computing

22

Evaluation of Residuum through Integration

Model problem, evaluation of E ((f(θ,H(θ)u)−A(θ)[H(θ)u])Hγ(θ))
Monte Carlo Quadrature k = 10

Polynomial-

degree

σ of
component

Z = 106

abs. error
·103

Z = 36
abs. error ·103

0 0.26 0.5 ≈ 0

1 0.27 0.2 0.008

2 0.61 1.2 ≈ 0

3 0.77 1.5 0.07

4 2.29 4.5 ≈ 0

For error 1 · 10−3 in degree 4 ca. ≈ 20 million MC evaluations required.

Variance grows with degree.

TU Braunschweig Institute of Scientific Computing

23

Third Summary

• Stochastic Galerkin methods work.

• They are computationally possible on todays hardware.

• They are numerically stable, and have variational convergence theory

behind them.

• They can use existing software efficiently.

• They can be sparsified via sparse tensor products.

• Software framework is being built for easy integration of existing

software.

TU Braunschweig Institute of Scientific Computing

24

Important Features of Stochastic Galerkin

• For efficency try and use sparse representation throughout: ansatz in

tensor products, as well as storage of solution and residuum—and

matrix in tensor products, sparse grids for integration.

• In contrast to MCS, they are stable and have only cheap integrands.

• Can be coupled to existing software, only marginally more complicated

than with MCS.

TU Braunschweig Institute of Scientific Computing

25

Outlook

• Stochastic problems at very beginning (like FEM in the 1960’s), when

to choose which stochastic discretisation?

• Nonlinear (and instationary) problems possible (but much more work).

• Development of framework for stochastic coupling and parallelisation.

• Computational algorithms have to be further developed.

• Hierarchical parallelisation well possible.

TU Braunschweig Institute of Scientific Computing

	Formulation and Stochastic Galerkin Methods for Stochastic Partial Differential Equations III
	Repetition of Second Summary
	Overview III
	Approximation Theory
	Equations for Linear Stochastic Galerkin
	Computations for Linear Iterative Solution
	Interlude: Computation of Moments from PCE
	Non-Linear Equations
	Solution of Non-Linear Equations
	Solution of Non-Linear Equations II
	Stochastic Collocation
	Work Count
	Time Dependent Problems
	What is Wrong with the pure PCE?
	Simpler Case of Additive Noise
	Solution for Additive Noise
	Example: Computation of Moments
	Sparsification
	Operation Count
	Integration Rules
	High-Dimensional Integration
	Evaluation of Residuum through Integration
	Third Summary
	Important Features of Stochastic Galerkin
	Outlook

