Formulation and Stochastic Galerkin Methods for Stochastic Partial Differential Equations III

Hermann G. Matthies

with Andreas Keese

Institute of Scientific Computing Technische Universität Braunschweig, Germany

wire@tu-bs.de
http://www.wire.tu-bs.de

Stochstic Galerkin methods work.

Galerkin procedure is numerically stable \Rightarrow convergence.

Convergence rates seemingly only with regularity.

Stochastic calculations produce huge amounts of data, which is expensive to operate on and to store.

Results a priori live in very high dimensional spaces.

They have a natural tensor product structure.

Overview III

- 1. Approximation Theory
- 2. Computations for Stochastic Galerkin (linear)
- 3. Computations for Stochastic Galerkin (non-linear)
- 4. Stochastic Collocation for PCE
- 5. Time Evolution Problems
- 6. Sparse Tensor Product Approximation

Approximation Theory

- Stability of discrete approximation under truncated KLE and PCE.
 Matrix stays uniformly positive definite.
- Convergence follows from Céa's Lemma.
- Convergence rates under stochastic regularity in stochastic Hilbert spaces—stochastic regularity theory?.
- Error estimation via dual weighted residuals possible.

Theorem: Let p > 0, r > 1, $|\rho| \le 1$. Let $P_{k,m}$ be projection onto $\mathscr{S}_{k,m}$. $\forall R \in (\mathcal{S})^{\rho,-p} ||R - P_{k,m}(R)||_{\rho,-p}^2 \le ||R||_{\rho,-p+r}^2 c(m,k,r)^2$, where $c(m,k,r)^2 = c_1(r)m^{1-r} + c_2(r)2^{-kr}$. But dim $\mathscr{S}_{k,m}$ grows too quickly with k and m. Sparser spaces and error estimates needed.

Equations for Linear Stochastic Galerkin

In what follows we use orthonormal
$$\hat{H}_{\alpha}(\boldsymbol{\theta}) = H_{\alpha}(\boldsymbol{\theta})/\sqrt{\alpha!}$$
 instead of $H_{\alpha}(\boldsymbol{\theta})$. With $\boldsymbol{f}^{(\gamma)} := \mathbb{E}\left(\hat{H}_{\gamma}\boldsymbol{f}(\boldsymbol{\theta})\right)$ and $\mathbf{f} = [\boldsymbol{f}^{(0)}, \dots, \boldsymbol{f}^{(\gamma)}, \dots, \boldsymbol{f}^{(\lambda)}]$:

$$\sum_{\alpha} \sum_{\beta} \sum_{j} \xi_{j}^{(\alpha)} \underbrace{\mathbb{E}\left(\hat{H}_{\alpha}\hat{H}_{\beta}\hat{H}_{\gamma}\right)}_{=:\Delta_{\beta,\gamma}^{(\alpha)}} \underbrace{\int \nabla \boldsymbol{N}(x)\varkappa_{j}g_{j}(x)\nabla \boldsymbol{N}(x)^{T} dx}_{\boldsymbol{K}_{j}} \boldsymbol{u}^{(\beta)} = \boldsymbol{f}^{(\gamma)}$$

$$\underbrace{\mathbb{E}\left(\hat{H}_{\alpha}\hat{H}_{\beta}\hat{H}_{\gamma}\right)}_{=:\Delta_{\beta,\gamma}^{(\alpha)}} = \Delta_{\beta,\gamma}^{(\alpha)} = C_{\beta\gamma}^{(\alpha)}\sqrt{\frac{\alpha!}{\beta!\gamma!}}$$

Equations and \mathbf{u}, \mathbf{f} have tensor product structure (storage and use).

$$\mathbf{K}\mathbf{u} = \sum_{j} \sum_{\alpha} \xi_{j}^{(\alpha)} \Delta^{(\alpha)} \otimes \mathbf{K}_{j} \mathbf{u} = \mathbf{f}$$

Institute of Scientific Computing

Computations for Linear Iterative Solution

$$\mathbf{K}\mathbf{u} = \left[\sum_{j}\sum_{\alpha}\xi_{j}^{(\alpha)}\Delta^{(\alpha)}\otimes \mathbf{K}_{j}\right] \mathbf{u} = \mathbf{f}$$

With preconditioner $\mathbf{P} = \mathbf{I} \otimes \mathbf{K}_0$ a simple iteration is

$$^{k+1}\mathbf{u} = {}^{k}\mathbf{u} + \mathbf{P}^{-1}(\mathbf{f} - \mathbf{K} {}^{k}\mathbf{u}).$$

Of course \mathbf{P}^{-1} is only a symbolic notation.

Which means for 'material' $\varkappa_{\jmath} g_{\jmath}(x)$ and each β compute the 'residuum' ${}^{k}_{\jmath} \boldsymbol{w}^{(\beta)} := \boldsymbol{K}_{\jmath} {}^{k} \boldsymbol{u}^{(\beta)}$ and then ${}^{k+1} \mathbf{u} = {}^{k} \mathbf{u} + {}^{k} \mathbf{v}$ with ${}^{k} \boldsymbol{v}^{(\gamma)} = \boldsymbol{K}_{0}^{-1} (\boldsymbol{f}^{(\gamma)} - \sum_{\alpha,\beta,\jmath} {}^{k}_{\jmath} \boldsymbol{w}^{(\beta)} \xi_{\jmath}^{(\alpha)} \Delta_{\beta,\gamma}^{(\alpha)})$

This is one 'preconditioner solve' of the deterministic code.

Interlude: Computation of Moments from PCE

Discrete version of PCE of
$$\boldsymbol{u}(\boldsymbol{\theta})$$
:
 $\boldsymbol{u}(\boldsymbol{\theta}) = \bar{\boldsymbol{u}} + \tilde{\boldsymbol{u}}(\boldsymbol{\theta}) = \bar{\boldsymbol{u}} + \sum_{\gamma \neq 0} \boldsymbol{u}^{(\gamma)} \hat{H}_{\gamma}(\boldsymbol{\theta})$
Let $\boldsymbol{M}_{u}^{(k)} = \mathbb{E}\left(\underbrace{\tilde{\boldsymbol{u}}(\boldsymbol{\theta}) \otimes \ldots \otimes \tilde{\boldsymbol{u}}(\boldsymbol{\theta})}_{k \in \mathbb{N}}\right) = \mathbb{E}\left(\tilde{\boldsymbol{u}}^{\otimes k}\right)$, totally symmetric,
especially $\boldsymbol{M}_{u}^{(1)} = \bar{\boldsymbol{u}}, \ \boldsymbol{M}_{u}^{(2)} = \boldsymbol{C}_{u} = \sum_{\gamma \neq 0} \boldsymbol{u}^{(\gamma)} \otimes \boldsymbol{u}^{(\gamma)}.$

It results that multi-point correlation

$$oldsymbol{M}_{u}^{(k)} = \mathbb{E}\left(ilde{oldsymbol{u}}^{\otimes k}
ight) = \sum_{\gamma_{(1)}, \dots, \gamma_{(k)}
eq 0} \mathbb{E}\left(\prod_{j=1}^{k} \hat{H}_{\gamma_{(j)}}(oldsymbol{ heta})
ight) oldsymbol{u}^{(\gamma_{(1)})} \otimes \ldots \otimes oldsymbol{u}^{(\gamma_{(k)})}$$

Non-Linear Equations

Example: Use $\kappa(x, u, \omega) = a(x, \omega) + b(x, \omega)u^2$, and a, b random. Space discretisation generates a non-linear equation $A(\theta, u(\theta)) = A(\theta, \sum_{\beta} u^{(\beta)} \hat{H}_{\beta}(\theta)) = f(\theta)$. Projection onto PCE: $\mathbf{a}[\mathbf{u}] = [\dots, \mathbb{E}\left(\hat{H}_{\alpha}(\theta)A(\theta, \sum_{\beta} u^{(\beta)} \hat{H}_{\beta}(\theta))\right), \dots] = \mathbf{f} = \mathbf{F}\varphi \Phi^T$

Expressions in a need high-dimensional integration (in each iteration), e.g. Monte Carlo or Smolyak (sparse grid) quadrature: $\mathbf{a}^{(\alpha)} = \mathbb{E}\left(\hat{H}_{\alpha}(\boldsymbol{\theta})\boldsymbol{A}(\boldsymbol{\theta},\boldsymbol{u}(\boldsymbol{\theta}))\right) \approx \sum_{z=1}^{Z} w_{z}\hat{H}_{\alpha}(\theta_{z})\boldsymbol{A}(\theta_{z},\boldsymbol{u}(\theta_{z}))$

The residual equation to be solved is

$$\mathbf{r}(\mathbf{u}) := \mathbf{f} - \mathbf{a}[\mathbf{u}] = 0.$$

Solution of Non-Linear Equations

Assume solver for deterministic problem: $\mathbf{r}(\mathbf{u}) = 0$: ${}^{k+1}\mathbf{u} = {}^{k}\mathbf{u} + {}^{k}\mathbf{w} = {}^{k}\mathbf{u} + S({}^{k}\mathbf{u}, \mathbf{r}({}^{k}\mathbf{u})) =: T({}^{k}\mathbf{u}, \mathbf{r}({}^{k}\mathbf{u}))$ Then stochastic Galerkin non-linear iteration may be ${}^{k+1}\mathbf{u} = {}^{k}\mathbf{u} + {}^{k}\mathbf{w} = {}^{k}\mathbf{u} + \mathbf{S}({}^{k}\mathbf{u}, \mathbf{r}({}^{k}\mathbf{u})) =: \mathbf{T}({}^{k}\mathbf{u}, \mathbf{r}({}^{k}\mathbf{u}))$ with $\mathbf{S}({}^{k}\mathbf{u}, \mathbf{r}({}^{k}\mathbf{u})) = [S({}^{k}\mathbf{u}^{(0)}, \mathbf{r}^{(0)}({}^{k}\mathbf{u})) \dots, S({}^{k}\mathbf{u}^{(\beta)}, \mathbf{r}^{(\beta)}({}^{k}\mathbf{u})), \dots]$ The only interaction with the deterministic solver is

- computing residua for realisations θ_z
- using iteration for those residua.

A quasi-Newton method may accelerate convergence

$$^{k+1}\mathbf{u} = {^k}\mathbf{u} + {^k}\mathbf{w}, \quad {^k}\mathbf{w} = \mathbf{H}_k(\mathbf{r}({^k}\mathbf{u}))$$
$$\mathbf{H}_k(\mathbf{r}) = \mathbf{S}({^k}\mathbf{u}, \mathbf{r}) + \sum_{j=1}^k (a_j\mathbf{p}_j\mathbf{p}_j^T\mathbf{r} + b_j\mathbf{q}_j\mathbf{q}_j^T\mathbf{r})$$

Tensors p and q computed from residuum and last increment. Notice tensor products of (hopefully sparse) tensors.

Needs pre-conditioner ${f S}$ for good convergence: May use linear solver as described before, i.e.

$$\mathbf{S} = \boldsymbol{I} \otimes \boldsymbol{K}_0.$$

Stochastic Collocation

As the $\{\hat{H}_{lpha}(m{ heta})\}$ are an orthonormal basis, the PCE of

$$oldsymbol{u}(oldsymbol{ heta}) = \sum_eta oldsymbol{u}^{(eta)} \hat{H}_eta(oldsymbol{ heta})$$

may be formally computed from simple projections:

$$\begin{split} \boldsymbol{u}^{(\beta)} &= \langle \hat{H}_{\beta}(\boldsymbol{\theta}), \boldsymbol{u}(\boldsymbol{\theta}) \rangle = \mathbb{E} \left(\hat{H}_{\beta}(\boldsymbol{\theta}) \boldsymbol{u}(\boldsymbol{\theta}) \right) = \\ \mathbb{E} \left(\hat{H}_{\beta}(\boldsymbol{\theta}) \sum_{\alpha} \boldsymbol{u}^{(\alpha)} \hat{H}_{\alpha}(\boldsymbol{\theta}) \right) &= \sum_{\alpha} \boldsymbol{u}^{(\alpha)} \mathbb{E} \left(\hat{H}_{\beta}(\boldsymbol{\theta}) \hat{H}_{\alpha}(\boldsymbol{\theta}) \right) = \sum_{\alpha} \boldsymbol{u}^{(\alpha)} \delta_{\alpha,\beta}. \\ \text{Hence } \boldsymbol{u}^{(\beta)} &= \mathbb{E} \left(\hat{H}_{\beta}(\boldsymbol{\theta}) \boldsymbol{u}(\boldsymbol{\theta}) \right) \approx \sum_{z=1}^{Z} w_{z} \hat{H}_{\beta}(\theta_{z}) \boldsymbol{u}(\theta_{z}). \\ \text{This only needs sample solutions } \boldsymbol{u}(\theta_{z}) \text{ and works} \\ \text{ both for linear and non-linear problems.} \end{split}$$

TU Braunschweig

Work Count

Stochastic collocation faces same stability problems as was previously explained for Monte Carlo.

Assume N deterministic and M stochastic variables, i.e. \mathbf{u} is $N \times M$.

Assume that for the stochastic Galerkin method we need J iterations, then the total work is $Z \cdot J$ residua $+M \cdot J$ iterations.

Assume that for the stochastic collocation method we need I iterations on average, then the total work is $Z \cdot I$ residua $+Z \cdot I$ iterations.

Often J slightly larger than I, but Z is much larger than M. Often iterations cost more than residua.

Time Dependent Problems

For a time dependent problem with $u \in U$ and $f \in \mathcal{F}$ (usually $= U^*$) $\dot{u} + A[u] = f(t)$,

if now either the (possibly non-linear) operator or the rhs f are stochastic, the stochastic solution may be sought in a space $\mathcal{U}\otimes\mathscr{S}$

If this evolution problem is normally space-discretised via $u(x,t) = \sum_k u_k(t)N_k(x)$ to give ODEs for the $[\dots, u_k(t), \dots]^T = u(t)$: $\dot{u} + A[u] = f(t)$, the stochastic ansatz $u(t, \theta) = \sum_{\alpha} u^{(\alpha)}(t)\hat{H}_{\alpha}(\theta)$ gives for $u(t) = [\dots, u^{(\alpha)}(t), \dots]$ many more ODEs: $\dot{u} + a[u] = f(t)$,

Remember already for data field $\kappa(x,\omega)$ a KLE was additionally used to have fewer terms.

For a solution $\mathbf{u} = [\dots, u^{(\alpha)}, \dots]$ there are too many PCE terms, all stochastically relevant information is encoded optimally in Karhunen-Loève expansion (KLE).

When only a few vectors $oldsymbol{u}_\ell$ are needed in the end, why compute all the $oldsymbol{u}^{(lpha)}$ in between?

Stochastic Galerkin may be adapted (this is a kind of model reduction) to work on much less information.

Assume first that \boldsymbol{K} is not random: $\forall \gamma \in \mathcal{J}_{k,m}$ satisfy: $\sum_{\beta \in \mathcal{J}_{k,m}} \mathbb{E} \left(\hat{H}_{\gamma}(\boldsymbol{\theta}) \hat{H}_{\beta}(\boldsymbol{\theta}) \right) \boldsymbol{K} \boldsymbol{u}^{(\beta)} = \boldsymbol{K} \boldsymbol{u}^{(\gamma)} = \mathbb{E} \left(\boldsymbol{f}(\boldsymbol{\theta}) H_{\gamma}(\boldsymbol{\theta}) \right) =: \boldsymbol{f}^{(\gamma)}$

There are too many $f^{(\gamma)}$. Use discrete version of KLE of $f(\theta)$:

$$oldsymbol{f}(oldsymbol{ heta}) = oldsymbol{ar{f}} + \sum_\ell arphi_\ell \, \phi_\ell(oldsymbol{ heta}) oldsymbol{f}_\ell = oldsymbol{ar{f}} + \sum_\ell \sum_\gamma arphi_\ell \, \phi_\ell^{(\gamma)} \hat{H}_\gamma(oldsymbol{ heta}) oldsymbol{f}_\ell.$$

In particular
$$oldsymbol{f}^{(\gamma)} = \sum_{\ell} \varphi_{\ell} \phi_{\ell}^{(\gamma)} oldsymbol{f}_{\ell}$$
. The SVD of $oldsymbol{f}(oldsymbol{ heta})$ is
with $oldsymbol{\Phi} = (\phi_{\ell}^{(\gamma)}), \ oldsymbol{arphi} = \operatorname{diag}(\varphi_{\ell}), \ \text{and} \ oldsymbol{F} = [\dots, oldsymbol{f}_{\ell}, \dots];$
 $oldsymbol{f} = [\dots, oldsymbol{f}^{(\gamma)}, \dots] = oldsymbol{F} oldsymbol{arphi} oldsymbol{\Phi}^T = \sum_{\ell} \varphi_{\ell} oldsymbol{v}_{\ell} \phi_{\ell}^T.$

Solution for Additive Noise

Observe
$$K\bar{u} = \bar{f}$$
, and set $V := K^{-1}F$ (i.e. $\forall \ell$ solve $Kv_{\ell} = f_{\ell}$),
then $u(\theta) = \bar{u} + V\varphi \Phi^T H = \bar{u} + \sum_{\ell} \varphi_{\ell} v_{\ell} \phi_{\ell}^T H$

But this is not the SVD of $u(\theta)$! This via eigenproblem: Covariance $C_f := \mathbb{E}\left(\tilde{f}(\theta) \otimes \tilde{f}(\theta)\right) = F\varphi^2 F^T$. Hence $C_u := \mathbb{E}\left(\tilde{u}(\theta) \otimes \tilde{u}(\theta)\right) = K^{-1}F\varphi^2(K^{-1}F)^T = V\varphi^2 V^T$

Even fewer terms needed with SVD of $m{u}(m{ heta})$ from $m{C}_u m{U} = (m{V} m{arphi}^2 m{V}^T) m{U} = m{U} m{v}^2$

Sparsification achieved for \mathbf{u} via SVD with small m: $\mathbf{u} = \bar{\mathbf{u}} + [\dots, \mathbf{u}_m] \operatorname{diag}(v_m) (y_m^{(\beta)})^T \mathbf{H} = \bar{\mathbf{u}} + \mathbf{U} \mathbf{v} \mathbf{Y}^T \mathbf{H},$ with $\mathbf{Y}^T := \operatorname{truncate} (\mathbf{v} \mathbf{U}^T \mathbf{V} \boldsymbol{\varphi}^{-1} \mathbf{\Phi}^T).$

Example: Computation of Moments

Let
$$M_f^{(k)} = \mathbb{E}\left(\overbrace{\tilde{f}(\omega) \otimes \ldots \otimes \tilde{f}(\omega)}^{k \text{ times}}\right) = \mathbb{E}\left(\widetilde{f}^{\otimes k}\right)$$
, totally symmetric,
and $M_f^{(1)} = \overline{f}$, $M_f^{(2)} = C_f$.
KLE of C_f is $C_f = \sum_{\ell} \varphi_{\ell} f_{\ell} f_{\ell}^T = \sum_{\ell} \varphi_{\ell} f_{\ell} \otimes f_{\ell}$.
For deterministic operator K , just compute $Kv_{\ell} = f_{\ell}$, and then
 $K\bar{u} = \overline{f}$, and $M_u^{(2)} = C_u = \mathbb{E}\left(\widetilde{u}^{\otimes k}\right) = \sum_{\ell} \varphi_{\ell} v_{\ell} \otimes v_{\ell}$.
As $\widetilde{u}(\theta) = \sum_{\ell} \sum_{\alpha} \varphi_{\ell} \phi_{\ell}^{(\alpha)} H_{\alpha}(\theta) v_{\ell}$, it results that multi-point correlation
 $M_u^{(k)} = \sum_{\ell_1 \leq \ldots \leq \ell_k} \prod_{m=1}^k \varphi_{\ell_m} \sum_{\alpha_{(1)}, \dots, \alpha_{(k)}} \prod_{n=1}^k \phi_{\ell_m}^{(\alpha_{(n)})} \mathbb{E}\left(H_{\alpha_{(1)}} \cdots H_{\alpha_{(k)}}\right) v_{\ell_1} \otimes \ldots \otimes v_{\ell_k}$.

Sparsification

Goal: As with additive noise, compute only with f_{ℓ} , u_{ℓ} from SVD.

Start iteration with tensor product of low rank L.

$$\mathbf{f} = [\dots, \mathbf{f}^{(\gamma)}, \dots] = \mathbf{F} \boldsymbol{\varphi} \mathbf{\Phi}^T = \sum_{\ell} \varphi_{\ell} \, \boldsymbol{v}_{\ell} \boldsymbol{\phi}_{\ell}^T.$$

At each iteration k, rank of iterative approximation \mathbf{u}_k will increase by number of terms in matrix sum.

In each iteration, perform a SVD of \mathbf{u}_k and reduce rank again to L.

Resulting iteration converges to SVD = discrete KLE of **u**.

Operation Count

$$\mathbf{K} \mathbf{u} = \sum_{j} \sum_{\alpha} \xi_{j}^{(\alpha)} \Delta^{(\alpha)} \otimes \mathbf{K}_{j} \mathbf{u} = \mathbf{f}$$

Assume sum in **K** has K terms, **u** and **f** have size $N \times M$, and $\mathbf{f} = [\dots, \mathbf{f}^{(\gamma)}, \dots] = \mathbf{F} \boldsymbol{\varphi} \boldsymbol{\phi}^T = \sum_{\ell} \varphi_{\ell} \, \boldsymbol{v}_{\ell} \boldsymbol{\phi}_{\ell}^T$ has $L \ll N, L \ll M$ terms.

Each application of \mathbf{K} on full \mathbf{u}_k needs $K \times M \mathbf{K}$ -multiplications plus $K \times N \Delta$ -multiplications.

Each application of \mathbf{K} on low rank tensor product \mathbf{u}_k needs $K \times \mathbf{L}$ \mathbf{K} -multiplications plus $K \times \mathbf{L} \Delta$ -multiplications, which is much less.

Storage is reduced from $N \times M$ to $L \times (N + M)$.

For Monte Carlo (MC), the points θ_z are random according to measure Γ , and weights are $w_z = 1/Z$.

For Quasi Monte Carlo (QMC), the points θ_z are non-random according to number-theoretic low discrepancy series , and weights are still $w_z = 1/Z$.

For Product Gauss (full tensor product) rules the points θ_z and weights w_z come from one dimensional rules.

For sparse grid Smolyak rules, the points θ_z and weights w_z are known, they come from combination of different rules in different dimensions.

We want
$$\mathbb{E}(\psi(\boldsymbol{\theta})) = \int_{\Theta_m} \psi(\boldsymbol{\theta}_m) d\Gamma_m(\boldsymbol{\theta}_m) = \int_{\theta_1} \cdots \int_{\theta_m} \psi(\theta_1, \dots, \theta_m) d\Gamma_1(\theta_1) \cdots d\Gamma_1(\theta_m)$$

Expected error ϵ :

Pure Monte Carlo (MC) has $\epsilon = O(\|\psi\|_2 Z^{-1/2})$ Quasi Monte Carlo (QMC) has $\epsilon = O(\|\psi\|_{BV} Z^{-1} (\log Z)^m)$ Quadrature-formulas (integrand in $C^r(\Theta_m)$: Full Product k-point Gauss $\epsilon = O(Z^{-(2r-1)/m})$ with $Z = O(k^m)$ Sparse Grid Smolyak $\epsilon = O(Z^{-r} (\log Z)^{(m-1)(r+1)})$ with $Z = O(\frac{2^k}{k!}m^k)$

Evaluation of Residuum through Integration

Model problem, evaluation of $\mathbb{E}\left((\boldsymbol{f}(\boldsymbol{\theta}, \boldsymbol{H}(\boldsymbol{\theta})\mathbf{u}) - \boldsymbol{A}(\boldsymbol{\theta})[\boldsymbol{H}(\boldsymbol{\theta})\mathbf{u}])H_{\gamma}(\boldsymbol{\theta})\right)$

Monte Carlo Quadrature k = 10

Polynomial- degree	σ of component	$Z=10^6$ abs. error $\cdot 10^3$	$Z = 36$ abs. error $\cdot 10^3$
~			
0	0.26	0.5	pprox 0
1	0.27	0.2	0.008
2	0.61	1.2	pprox 0
3	0.77	1.5	0.07
4	2.29	4.5	pprox 0

For error $1 \cdot 10^{-3}$ in degree 4 ca. \approx 20 million MC evaluations required. Variance grows with degree.

Third Summary

- Stochastic Galerkin methods work.
- They are computationally possible on todays hardware.
- They are numerically stable, and have variational convergence theory behind them.
- They can use existing software efficiently.
- They can be sparsified via sparse tensor products.
- Software framework is being built for easy integration of existing software.

Important Features of Stochastic Galerkin

- For efficency try and use sparse representation throughout: ansatz in tensor products, as well as storage of solution and residuum—and matrix in tensor products, sparse grids for integration.
- In contrast to MCS, they are stable and have only cheap integrands.
- Can be coupled to existing software, only marginally more complicated than with MCS.

Outlook

- Stochastic problems at very beginning (like FEM in the 1960's), when to choose which stochastic discretisation?
- Nonlinear (and instationary) problems possible (but much more work).
- Development of framework for stochastic coupling and parallelisation.
- Computational algorithms have to be further developed.
- Hierarchical parallelisation well possible.

