
Formulation and Stochastic Galerkin Methods for
Stochastic Partial Differential Equations II

Hermann G. Matthies
with Andreas Keese

Institute of Scientific Computing
Technische Universität Braunschweig, Germany

wire@tu-bs.de
http://www.wire.tu-bs.de

2

Repetition of First Summary

• Motivation, Probabiliy, aleatoric and epistemic Uncertainty

• Formulation as a well-posed problem

• RVs, Stochastic Processes and Random Fields

• Spectral Expansion, Karhunen-Loève Expansion

• Still open:

– How to discretise RVs ?

– How to actually compute u(ω) ?

– How to perform integration ?

TU Braunschweig Institute of Scientific Computing

3

Overview II

1. Approximating Random Variables

2. Computational Approaches

3. Direct Integration and Collocation Methods

4. Stochastic Galerkin Methods

5. Stability Issues

6. Convergence

TU Braunschweig Institute of Scientific Computing

4

Remember Karhunen-Loève Expansion (KLE)

Karhunen-Loève Eigenproblem gives spectrum {κ2
} and orthogonal KLE

eigenfunctions g(x) ⇒ Representation of Cκ and κ:

Cκ(x, y) =
∞∑

=1

κ2
 g(x)g(y)

and

κ(x, ω) = κ̄(x) +
∞∑

=1

κ g(x)ξ(ω) =:
∞∑

=0

κ g(x)ξ(ω)

with centred, uncorrelated random variables ξ(ω).
i.e. E (ξı) = 〈ξı〉 = 0 and cov(ξı, ξ) = 〈ξıξ〉 = 〈ξı, ξ〉L2(Ω) = δı.

Truncation ⇒ optimal—in variance—expansion in m variables.

TU Braunschweig Institute of Scientific Computing

5

Approximating RVs

The solution u(x, ω) will be a random field through ξ(ω),
i.e. u(x, ω) = u(x, ξ(ω)).

How to deal with RVs ξ(ω) ?

• Use ξ(ω) directly. Assume ξ(ω) to be independent, only a finite

number M . Transform measure P to Y = RM with image measure

from {ξ(ω)}=1,...,M . Ansatz for solution u(x, ω) in (doubly

orthogonal) polynomials in y = (y1, . . . , yM) ∈ Y w.r.t. image

measures.

• Represent ξ(ω) as functions of other—simpler—RVs.

TU Braunschweig Institute of Scientific Computing

6

Functions of Simpler RVs

What kind of simpler RVs ?

What kind of functions? — Usually polynomials or other algebras.

• Gaussian RVs —classical Wiener Chaos

• Poissonian RVs —discrete Poisson Chaos

• other RVs, e.g. uniform, exponential, Gamma, Beta, etc.

This is called generalised Polynomial Chaos (gPC).

Best is to use orthogonal polynomials w.r.t. relevant measure, i.e.

Hermite polynomials for Gaussian RVs, Charlier polynomials for

Poisson RVs, Legendre polynomials for uniform RVs, Laguerre

polynomials for exponential RVs, etc. ⇒ Askey scheme.

TU Braunschweig Institute of Scientific Computing

7

Why White Noise Analysis?

Comes from directly constructing Ω as (a subset of) S ′(G)
(tempered distributions) with a Gaussian or Poissonian measure P

⇒ Gaussian or Poissonian white noise.

Elements from S(G) (rapidly falling test functions) are then naturally

Gaussian or Poissonian RVs.

Let F = F({ξ(ω)}=1,...,∞) be the σ-algebra generated by ξ(ω).
Want to approximate L2(Ω,F, P) ⊆ L2(Ω, P).

Density results: Polynomial algebra, algebra of exponentials, and algebra

of trigonometric polynomials of Gaussian RVs is dense in L2(Ω,F, P),
polynomial algebra of Poissonian RVs is dense in L2(Ω,F, P).

TU Braunschweig Institute of Scientific Computing

8

Polynomial Chaos Expansion in Gaussians (PCE)

Each ξ(ω) =
∑

α ξ
(α)
 Hα(θ(ω)) from KLE may be expanded in

polynomial chaos expansion (PCE), with orthogonal polynomials of

independent Gaussian RVs {θm(ω)}∞m=1 =: θ(ω):

Hα(θ(ω)) =
∞∏

=1

hα(θ(ω)),

where h`(ϑ) are the usual Hermite polynomials, and

J := {α |α = (α1, . . . , α, . . .), α ∈ N0, |α| :=
∞∑

=1

α < ∞}

are multi-indices, where only finitely many of the α are non-zero.

Here 〈Hα,Hβ〉L2(Ω) = E (HαHβ) = α! δαβ, where α! :=
∏∞

=1(α!).

TU Braunschweig Institute of Scientific Computing

9

Polynomial Chaos

−2
−1

0
1

2

−2
−1

0
1

2
−4

−2

0

2

4

y −2
−1

0
1

2

−2
−1

0
1

2
−4

−2

0

2

4

6

8

10

y

Hermite(1,1) Hermite(2,2)

−2
−1

0
1

2

−2
−1

0
1

2
−6

−4

−2

0

2

4

6

y −2
−1

0
1

2

−2
−1

0
1

2
−4

−2

0

2

4

y

Hermite(2,3) Hermite(3,3)

TU Braunschweig Institute of Scientific Computing

10

Hermite Algebra

Hermite polynomials Hα(θ) are considered on Θ = RN with image

product measure Γ =
⊗

m Γm from Gaussian RVs {θm(ω)}∞m=1 =: θ(ω).
Remember that polynomials are an algebra:

hk(ϑ)h`(ϑ) =
k+∑̀
m=0

c
(m)
k` hm(ϑ)

The coefficients c
(m)
k` are explicitly known—structure constants of the

algebra. Similarly for multi-polynomials Hα:

Hα(θ)Hβ(θ) =
∑

γ

C
(γ)
αβ Hγ(θ)

Structure constants C
(γ)
αβ are explicitly known in terms of c

(m)
k` .

TU Braunschweig Institute of Scientific Computing

11

Stochastic or White Noise Hilbert Spaces

Start with formal PCE: R(θ) =
∑

α∈J R(α)Hα(θ), where R(α) ∈ V, and

V some other Hilbert space. Define for |ρ| ≤ 1 and p ≥ 0 inner product

and corresponding norm (with (2N)β :=
∏

∈N(2)β):

〈R1, R2〉ρ,p =
∑
α

〈R(α)
1 , R

(α)
2 〉V (α!)1+ρ(2N)pα.

Define for 1 ≥ ρ ≥ 0, p ≥ 0 (with ‖R‖2
ρ,p = 〈R,R〉ρ,p):

(S)ρ,p = {R(θ) =
∑
α∈J

R(α)Hα(θ) : ‖R‖ρ,p < ∞}.

These are Hilbert spaces, the duals are denoted by (S)−ρ,−p, and

L2(Ω) = (S)0,0. One has Gelfand triplets (S)ρ,p ⊂ (S)0,0 ⊂ (S)−ρ,−p.

TU Braunschweig Institute of Scientific Computing

12

White Noise Hilbert Spaces

The scale of Hilbert spaces {(S)ρ,p} allows definitions of various

stochastic distribution spaces via toplogical limits.

PCE allows definition of stochastic Sobolev spaces via inner products

〈R1, R2〉k =
∞∑

n=0

(n + 1)k
∑
|α|=n

〈R(α)
1 , R

(α)
2 〉V.

Define for k ∈ N0 (with ‖R‖2
k,2 = 〈R,R〉k):

Dk
2 = {R(θ) =

∑
α∈J

R(α)Hα(θ) : ‖R‖k,2 < ∞}.

Knowing that a random variable R is in one of these spaces gives

regularity results (differentiability, smoothness of distribution function).

TU Braunschweig Institute of Scientific Computing

13

Computational Approaches

The principal computational approaches are:

Perturbation Assume that stochastics is a small perturbation around

mean value, do Taylor expansion and truncate.

Direct Integration (e.g. Monte Carlo) Directly compute statistic by

quadrature: Ψu = E (Ψ(u(ω), ω)) =
∫
Θ

Ψ(u(θ),θ) Γ (dθ) by

numerical integration. Needs solution u(θz).

Direct Response Surface Try to find a functional fit u(θ) ≈ v(θ), then

compute with v(θ). Needs solution u(θz). Integrand is now cheap.

One possibility is PCE.

Stochastic Galerkin This is one possible way to compute PCE.

TU Braunschweig Institute of Scientific Computing

14

Stability Issues

For direct methods expansions (both KLE and PCE) pose stability

problems: Both only converge in L2, not in L∞ (uniformly) as required

⇒ spatially discrete problems to compute u(θz) for a specific realisation

θz (like Monte Carlo) may not be well posed.

Convergence of KLE may be uniform if covariance Cκ(x1, x2) smooth

enough, but e.g. not possible for Cκ(x1, x2) = exp(−a|x1 − x2|)
Truncation of PCE gives a polynomial, as soon as one α is odd, there

are regions where κ is negative—compare approximating exp(ξ) with a

truncated Taylor poplynomial at odd power.

This can not be repaired. Like negative Jacobian in normal FEM.

Method κ(x, ω) = φ(x, γ(x, ω)) possible with KLE of Gaussian γ(x, ω).

TU Braunschweig Institute of Scientific Computing

15

Stochastic Galerkin I

Variational formulation discretised in space, e.g. via finite element ansatz

u(x, ω) =
∑n

`=1 u`(θ)N`(x) = [N1(x), . . . , Nn(x)][u1(θ), . . . , un(θ)]T =
N(x)Tu(θ):

K(θ)[u(θ)] = f(θ).

Recipe: Stochastic ansatz and projection in stochastic dimensions

u(θ) =
∑

β

u(β)Hβ(θ) = [. . . , u(β), . . .][. . . , Hβ(θ), . . .]T = uH(θ)

Goal: Compute coefficients u(β) through stochastic Galerkin Methods,

∀γ : E ((f(θ)−K(θ)[uH(θ)])Hγ(θ)) = 0,

requires solution of one huge system, only integrals of residuals.

TU Braunschweig Institute of Scientific Computing

16

Stochastic Galerkin II

Of course we can not use all α ∈ J , but

take only a finite subset

Jk,m = {α ∈ J | |α| ≤ k, ı > m αı = 0} ⊂ J .

Let Sk,m = span{Hα : α ∈ Jk,m},

then dim Sk,m =
(

m + p + 1
p + 1

)
better to use other subsets—

best is adaptive choice.

m k dim Sk,m

3 3 35
5 84

5 3 126
5 462

10 3 1001
5 8008

20 3 10626
5 230230

10 ≈ 8.5 · 107

100 3 ≈ 4.6 · 106

5 ≈ 1.7 · 109

10 ≈ 4.7 · 1014

TU Braunschweig Institute of Scientific Computing

17

Galerkin-Methods for the General Linear Case

∀γ ∈ Jk,m = {α ∈ J | |α| ≤ k, ı > m ⇒ αı = 0} satisfy:∑
β

[∫
G

∇N(x) E (κ(x,θ)Hβ(θ)Hγ(θ))∇N(x)T dx

]
u(β) =

E (f(θ)Hγ(θ))︸ ︷︷ ︸
=:γ!f (γ)

More efficient representation through direct expansion of κ in KLE and

PCE and analytic computation of expectations.

κ(x,θ) =
∞∑

=0

κ ξ(θ)g(x) ≈
r∑

=0

∑
α∈J2k,m

κ ξ(α)
 Hα(θ)g(x).

TU Braunschweig Institute of Scientific Computing

18

Resulting Equations

Insertion of expansion of κ #dofspace·#dofstoch linear equations.∑
α

∑
β

∑


ξ(α)
 E (HαHβHγ)︸ ︷︷ ︸

=:∆
(α)
β,γ

∫
∇N(x)κ g(x)∇N(x)T dx︸ ︷︷ ︸

K

u(β) = f (γ)

• K is stiffness matrix of a FEM discretisation for the material κ g(x).

• ⇒ Use deterministic FEM program in black-box-fashion.

• Equations have structure of a tensor product (storage and use).

Ku =
∑



∑
α

ξ(α)
 ∆(α) ⊗K u = f

• E (HαHβHγ) = E
(
Hα

∑
ε C

(ε)
βγ Hε

)
=

∑
ε C

(ε)
βγ 〈Hα,Hε〉 = C

(α)
βγ α!

TU Braunschweig Institute of Scientific Computing

19

Sparsity Structure

Non-zero blocks of ∆(α) for increasing degree of Hα

TU Braunschweig Institute of Scientific Computing

20

Properties of Global Equations

Ku =
∑



∑
α

ξ(α)
 ∆(α) ⊗K u = f

• Each K is symmetric, and each ∆(α) ⇒ Block-matrix K is

symmetric.

• Appropriate expansion of κ ⇒ K is uniformly positive definite.

• Never assemble block-matrix explicitly.

• ∆(α) are known analytically. No need to store explicitly.

• Use K only as multiplication.

• Use Krylov method (here CG) with pre-conditioner.

TU Braunschweig Institute of Scientific Computing

21

Block-Diagonal Pre-Conditioner

Let K = K0 = stiffness-matrix for average material κ(x).

Use deterministic solver as pre-conditioner:

P =

K . . . 0
...

0 . . . K

 = I ⊗K

Good pre-conditioner, when variance of κ not too large.

Otherwise use P = block-diag(K).
This may again be done with existing deterministic solver.

Block-diagonal P is well suited for parallelisation.

TU Braunschweig Institute of Scientific Computing

22

Example Solution

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Geometry

flow out

Dirichlet b.c.

flow = 0 Sources

7

8

9

10

11

12

0

1

2

0

1

2

5

10

15

Realization of κ

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0

1

2

0

1

2

4

6

8

10

Realization of solution

4

5

6

7

8

9

10

0

1

2

0

1

2

0

5

10

Mean of solution

1

2

3

4

5

0

1

2

0

1

2

0

2

4

6

Variance of solution

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

y

x

Pr{u(x) > 8}

TU Braunschweig Institute of Scientific Computing

23

Results of Galerkin Method

err.

·104

in mean

m = 6

k = 2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

1

2

3

4

y

x

err. ·104

in std dev

m = 6

k = 2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

y

x

u(α) for

α = (0, 0, 0, 1, 0, 0).

−1−0.8−0.6−0.4−0.200.20.40.60.81

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0

0.02

0.04

0.06

0.08

y

x

Error

·104 in

u(α)

Galerkin

sche-

me.
−1−0.8−0.6−0.4−0.200.20.40.60.81

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−0.5
0

0.5
1

1.5
2

2.5
3

y

x

TU Braunschweig Institute of Scientific Computing

24

Parallelising the Matrix-Vector Product

∀γ : (K u)(γ) =
J∑


N∑
β

nα∑
α

ξ(α)
 ∆(α)

β,γ ·K uβ

• K = deterministic solver.

This may be a (lower-level) parallel program to do K uβ.

• Parallelise operator-sum in 

⇒ several instances of deterministic solver in parallel.

• Distribute u and f ⇒ Parallelise sum in β.

• Sum in α may also be done in parallel, but usually not essential.

TU Braunschweig Institute of Scientific Computing

25

Parallelisation

∀γ : (K u)(γ) =
∑



∑
β

∑
α

ξ(α)
 ∆(α)

β,γ ·K uβ

• Obviously Parallel in γ.

• Block-vectors u and f distributed. May be replicated, in order to

reduce communication.

• Matrices K distributed over processors. May be replicated, in order

to reduce parallel communication, and use more processors than

number of K.

Several processor-groups, where each uses a subset of the K and stores

a subset of u and f . On Cray T3E with 128 proc. we have solved

systems with more than 5× 107 equations with high parallel efficiency.

TU Braunschweig Institute of Scientific Computing

26

Approximation Theory

• Stability of discrete approximation under truncated KLE and PCE.

Matrix stays uniformly positive definite.

• Convergence follows from Céa’s Lemma.

• Convergence rates under stochastic regularity in stochastic Hilbert

spaces—stochastic regularitry theory?.

• Error estimation via dual weighted residuals possible.

Theorem: Let p > 0, r > 1 and let |ρ| ≤ 1. Then for any R ∈ (S)ρ,p:

‖R− Pk,m(R)‖2
ρ,−p ≤ ‖R‖2

ρ,−p+r c(m, k, r)2,

where c(m, k, r)2 = c1(r)m1−r + c2(r)2−kr. But dim Sk,m grows too

quickly with k and m. Sparser spaces and error estimates needed.

TU Braunschweig Institute of Scientific Computing

27

Second Summary

Stochstic Galerkin methods work.

Galerkin procedure is numerically stable ⇒ convergence.

Convergence rates seemingly only with regularity.

Stochastic calculations produce huge amounts of data, which is

expensive to operate on and to store.

Results a priori live in very high dimensional spaces.

They have a natural tensor product structure.

TU Braunschweig Institute of Scientific Computing

	Formulation and Stochastic Galerkin Methods for Stochastic Partial Differential Equations II
	Repetition of First Summary
	Overview II
	Remember Karhunen-Loève Expansion (KLE)
	Approximating RVs
	Functions of Simpler RVs
	Why White Noise Analysis?
	Polynomial Chaos Expansion in Gaussians (PCE)
	Polynomial Chaos
	Hermite Algebra
	Stochastic or White Noise Hilbert Spaces
	White Noise Hilbert Spaces
	Computational Approaches
	Stability Issues
	Stochastic Galerkin I
	Stochastic Galerkin II
	Galerkin-Methods for the General Linear Case
	Resulting Equations
	Sparsity Structure
	Properties of Global Equations
	Block-Diagonal Pre-Conditioner
	Example Solution
	Results of Galerkin Method
	Parallelising the Matrix-Vector Product
	Parallelisation
	Approximation Theory
	Second Summary

