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Why Probabilistic or Stochastic Models?

Many descriptions (especially of future events) contain

elements, which are uncertain and not precisely known.

• For example future rainfall, or discharge from a river.

• More generally, action from surrounding environment.

• The system itself may contain only incompletely known

parameters, processes or fields (not possible or too

costly to measure)

• There may be small, unresolved scales in the model,

they act as a kind of background noise.

All these introduce some uncertainty in the model.
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Ontology of Uncertainty

A bit of ontology:

• Uncertainty may be aleatoric, which means random

and not reducible, or

• epistemic, which means due to incomplete knowledge.

Stochastic models can give quantitative information about

uncertainty, they are used for both types of uncertainty.

Possible areas of use: Reliability, heterogeneous materi-

als, upscaling, incomplete knowledge of details, uncertain

[inter-]action with environment, random loading, etc.
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Quantification of Uncertainty

Uncertainty may be modelled in different ways:

Intervals / convex sets do not give a degree of uncertainty, quantification

only through size of sets.

Fuzzy and possibilistic approaches model quantitative possibility with

certain rules. Generalisation of set membership.

Evidence theory models basic probability, but also (as a generalisation)

plausability (a kind of lower bound) and belief (a kind of upper bound)

in a quantitative way. Mathematically no measures.

Stochastic / probabilistic methods model probability quantitatively, have

most developed theory.
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Probability

What is probability? We may understand probability as

• A mathematical concept — theory of a finite measure.

• Applies to aleatoric phenomena, i.e. frequencies of

occurance — Bernoulli’s weak law of large numbers.

• Applies also to epistemic concepts — extension of Ari-

stotelian propositional logic to uncertain propositions

— Cox’s theorem. Realm of Bayesian and maximum

entropy methods.

First view is today often labeled classical, historically

Bernoulli and Laplace had the latter view.
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Physical Models

Models for a system S may be stationary with state u, exterior action f

and random model description (realisation) ω ∈ Ω, with probability

measure P: S(u, ω) = f(ω).

Evolution in time may be discrete (e.g. Markov chain), may be driven by

discrete random process un+1 = F(un, ω),

or continuous, (e.g. Markov process, stochastic differential equation),

may be driven by random processes

du = (S(u, ω)− f(ω, t))dt + B(u, ω)dW (ω, t) + P(u, ω)dQ(ω, t)

In this Itô evolution equation, W (ω, t) is a Wiener process, and Q(ω, t)
is a (compensated) Poisson process.
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Model Problem

Aquifier
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simple stationary model of groundwater flow

−∇ · (κ(x)∇u(x)) = f(x) & b.c., x ∈ G ⊂ Rd

(κ(x)∇u(x)) · n = g(x), x ∈ Γ ⊂ ∂G,

u hydraulic head, κ conductivity, f and g sinks and sources.

TU Braunschweig Institute of Scientific Computing



10

Model Stochastic Problem

Aquifier
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2D Model

simple stationary model of groundwater flow with stochastic data

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) & b.c., x ∈ G ⊂ Rd

(κ(x)∇u(x, ω)) · n = g(x, ω), x ∈ Γ ⊂ ∂G, ω ∈ Ω

κ stochastic conductivity, f and g stochastic sinks and sources.
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Stochastic Model

• Uncertainty of system parameters—e.g. κ = κ(x, ω) stochastic field

ω ∈ Ω = probability space with measure P.

• Assumption: 0 < κ0 ≤ κ(x, ω) < κ1. (Rather κ random tensor field).

Better ‖κ‖L∞(G×Ω) < κ1 ∧ ‖κ−1‖L∞(G×Ω) < κ−1
0

Possibilities: Transformation

κ(x, ω) = φ(x, γ(x, ω)) := F−1
κ(x) ◦ Φ(γ(x, ω))

of Gaussian field γ with given 2nd order statistic.

e.g. κ(x, ω) has marginal

β(1/2, 1/2)-distribution

or log-normal distribution
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Realisation of κ(x, ω)
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Stochastic PDE and Variational Form

Solution u(x, ω) is a stochastic field—in a tensor product space

W is a Sobolev space of spatial functions, S a space of random

variables (e.g. W = H1
eb(G),S = L2(Ω)):

W ⊗S 3 u(x, ω) =
∑

µ

vµ(x)u(µ)(ω)

Variational formulation: Find u ∈ W ⊗S , such that ∀v ∈ W ⊗S :

a(v, u) :=
∫

Ω

∫
G
∇v(x, ω) · (κ(x, ω)∇u(x, ω)) dx P(dω) =∫

Ω

[∫
G

v(x, ω)f(x, ω) dx +
∫

∂G
v(x, ω)g(x, ω) dS(x)

]
P(dω) =: 〈〈f, v〉〉.

TU Braunschweig Institute of Scientific Computing



14

Mathematical Results

To find a solution u ∈ W ⊗S such that for ∀v : a(v, u) = 〈〈f, v〉〉
under certain conditions

• is guaranteed by Lax-Milgram lemma, problem is well-posed in the

sense of Hadamard (existence, uniqueness, continuous dependence on

data f, g in L2- and on κ in L∞-norm).

• may be achieved by Galerkin methods, convergence established with

Céa’s lemma

• Galerkin methods are stable, if no variational crimes are committed

Good approximating subspaces of W ⊗S have to be found, as well as

efficient numerical procedures worked out.
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Functionals of Interest

Desirable: Uncertainty Quantification or Optimisation under uncertainty:

The goal is to compute functionals of the solution:

Ψu = 〈Ψ(u)〉 := E (Ψ(u)) :=
∫

Ω

∫
G

Ψ(u(x, ω), x, ω) dx P(dω)

e.g.: ū = E (u), or varu = E
(
(ũ)2

)
, where ũ = u− ū,

or P{u ≤ u0} = P({ω ∈ Ω|u(ω) ≤ u0}) = E
(
χ{u≤u0}

)
All desirables are usually expected values of some functional, to be

computed via (high dimensional) integration over Ω.
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General Approaches

Alternative Formulations / Approaches

• Moments: Derive equations for the moments of the quantities of

interest.

• Probablity distributions / densities: Derive equations for the

probability densities, e.g. Master-Equation, Fokker-Planck.

• Direct Integration: Compute desired statistics via direct integration

over Ω—high dimensional (e.g. Monte Carlo, Quasi Monte Carlo,

Smolyak (= sparse grids)).

• Direct Approximation: Compute an approximation to u(x, ω), use this

to compute everything else (traditional response surface methods,

stochastic Galerkin, stochastic collocation)
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General Computational Approach

Principal Approach:

1. Discretise / approximate physical model (e.g. via finite elements,

finite differences), and approximate stochastic model (processes,

fields) in finitely many independent random variables (RVs), ⇒
stochastic discretisation.

2. Compute statistics via integration over Ω—high dimensional (e.g.

Monte Carlo, Quasi Monte Carlo, Smolyak (= sparse grids)):

• Via direct integration. Each integration point ωz ∈ Ω requires one

expensive PDE solution (with rough data).

• Or approximate solution with some response-surface, then

integration by sampling a cheap expression at each integration point.
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Computational Requirements

• How to represent a stochastic process for computation, both

simulation or otherwise?

• Best would be as some combination of countably many independent

random variables (RVs).

• How to compute the required integrals or expectations numerically?

• Best would be to have probability measure as a product measure

P = P1 ⊗ . . .⊗ P`, then integrals can be computed as iterated

one-dimensional integrals via Fubini’s theorem,∫
Ω

Ψ P(dω) =
∫

Ω1

. . .

∫
Ω`

Ψ P1(dω1) . . . P`(dω`)
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Example Solution
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Tools of the Trade

A V-valued random variable (RV) r is a map Ω 7→ V (mostly V = R)

completely specified by its distribution function

∀r ∈ R : Fr(r) := Pr{r(ω) ≤ r} :=
∫
{r(ω)≤r}

P(dω) = E
(
χ{r(ω)≤r}

)
.

Mean r̄ = E (r(·)), [auto-]covariance Cr := E (̃r ⊗ r̃),
and fluctuating part r̃(ω) = r(ω)− r̄, with E (̃r) = 0.

Two RVs r1 and r2 are

uncorrelated If the [cross-]covariance Cr1,2 := E (̃r1 ⊗ r̃2) = 0, or if in

case V = R: 〈̃r1, r̃2〉 := E (̃r1r̃2) = 0 (orthogonal).

independent if for all functions φ1 and φ2 it holds that

E (φ1(r1)φ2(r2)) ≡ E (φ1(r1)) E (φ2(r2)).
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Stochastic Processes I

Consider interval T = [0, T ], stochastic process is ∀t ∈ T a RV st(ω)

alternatively ∀ω ∈ Ω random function—a realisation— sω(t) on T

Often only second order information—mean and covariance—known.

Mean s̄(t) = E (sω(t))—now a function of t—and fluctuating part s̃(t, ω).

Covariance may be considered at different times

Cs(t1, t2) := E (̃s(t1, ·)⊗ s̃(t2, ·))
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Stochastic Processes II

If s̄(t) ≡ s̄, and Cs(t1, t2) = cs(t1 − t2),
process is (weakly) stationary, with spectrum

Ss(νk) =
∫ T

0

cs(t) exp(−i2πνkt) dt, νk =
k

T
; k ∈ Z.

Process s may be realised (Fourier synthesised) by

s(t, ω) = s̄ +
∞∑

k=−∞

ςk(ω)
√

Ss(νk) exp(i2πνkt)

ςk(ω) are zero mean, unit variance uncorrelated RVs

(E (ςkς`) = 〈ςk, ς`〉 = δk`).
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Random Fields

Mean κ̄(x) = E (κω(x)) and fluctuating part κ̃(x, ω).

Covariance may be considered at different positions

Cκ(x1, x2) := E (κ̃(x1, ·)⊗ κ̃(x2, ·))

If κ̄(x) ≡ κ̄, and Cκ(x1, x2) = cκ(x1 − x2), process is homogeneous.

Here representation through spectrum as a Fourier sum is well known.

• Need to discretise spatial aspect (generalise Fourier representation).

One possibility is the Karhunen-Loève expansion (KLE).

• Need to discretise each of the random variables in Fourier synthesis.

One possibility is Wiener’s polynomial chaos expansion (PCE).
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Karhunen-Loève Expansion I
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KLE: Other names: Proper Orthogonal Decomposition (POD), Singular

Value Decomposition (SVD), Principal Component Analalysis (PCA):

spectrum of {κ2
} ⊂ R+ and orthogonal KLE eigenfunctions g(x):∫

G
Cκ(x, y)g(y) dy = κ2

 g(x) with

∫
G

g(x)gk(x) dx = δk.

⇒ Mercer’s representation of Cκ:

Cκ(x, y) =
∞∑

=1

κ2
 g(x)g(y)
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Karhunen-Loève Expansion II
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Representation of κ:

κ(x, ω) = κ̄(x) +
∞∑

=1

κ g(x)ξ(ω) =:
∞∑

=0

κ g(x)ξ(ω)

with centred, normalised, uncorrelated random variables ξ(ω):

E (ξ) = 0, E (ξξk) =: 〈ξ, ξk〉L2(Ω) = δk.
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Karhunen-Loève Expansion III

Realisation with:
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Truncate after m largest eigenvalues

⇒ optimal—in variance—expansion in m RVs.
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Karhunen-Loève Expansion IV

Modes for a 3-D domain
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Karhunen-Loève Expansion V

Reminder: SVD of a matrix W = UΣV T =
∑

 σuv
T


with UTU = I, V TV = I, and Σ = diag(σ). The σ are singular

values of W and σ2
 are eigenvalues of W TW or WW T .

To every random field w(x, ω) ∈ L2(G)⊗ L2(Ω)
associate a linear map W : L2(G) → L2(Ω)

W : L2(G) 3 v 7→ W (v)(ω) = 〈v(·), w(·, ω)〉L2(G) =∫
G

v(x)w(x, ω) dx ∈ L2(Ω).

KLE is SVD of the map W , the covariance operator is Cw := W ∗W ,
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Karhunen-Loève Expansion VI

〈u, Cwv〉L2(G) = 〈u, W ∗Wv〉L2(G) = 〈W (u),W (v)〉L2(Ω) =

E (W (u)W (v)) = E
(∫

G
u(x)w(x, ω) dx

∫
G

v(y)w(y, ω) dy

)
=∫

G

∫
G

u(x)E (w(x, ω)w(y, ω)) v(y) dy dx =∫
G

u(x)
∫
G

Cw(x, y)v(y) dy dx

Covariance operator Cw is represented by covariance kernel Cw(x, y).

Truncating the KLE is therefore the same as what is done when

truncating a SVD, finding a sparse representation (model reduction).
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First Summary

• Motivation, Probabiliy, aleatoric and epistemic Uncertainty

• Formulation as a well-posed problem

• RVs, Stochastic Processes and Random Fields

• Spectral Expansion, Karhunen-Loève Expansion

• Still open:

– How to discretise RVs ?

– How to actually compute u(ω) ?

– How to perform integration ?
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