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DNS sillage turbulent derrière un 
cylindre fixe droit 

Re=3900

Spectre d’énergie de la composante transversale de vitesse de 
l’écoulement dans le sillage d’un cylindre fixe (x/D=7).

DNS: Ma & Karniadakis, JFM, (2000).
Experiments: Ong & Wallace, Experiments in Fluids (1996).



paramètres/constantes de 
simulation, conditions 
d'opération

coefficients de transport, 
propriétés physiques

géométrie

conditions aux bords, 
conditions initiales

lois de comportement, 
modèles physiques, schéma 
numériques

Ecoulement au bord incertain 
(processus stochastique)

conditions aux limites 
incertaines

paramètres structure 
incertains

u(x, t; ξ) =
M∑

i=0

ui(x, t)Ψi(ξ)

Quantification de l’incertitude en mécanique des fluides

Méthodes spectrales stochastiques:
Chaos polynomial généralisé

ui(x, t) =
< u(x, t; ξ),Ψi(ξ) >

< Ψi
2(ξ) >



PC-based methods applied to flow problems:

Porous media flows (Ghanem & Dham 1998; Zhang & Lu 2004), thermal problems (Hien 
& Kleiber 1997, 1998; Xiu & Karniadakis 2003b ), micro-fluid systems (Debusschere et al 
2001), reacting flows & combustion (Reagan et al 2001), 0-Mach flows & thermo-fluid 
problems (Le Maître et al 2003). 

 Few studies exist that deal with full stochastic incompressible Navier-Stokes equations:

‣ Le Maitre et al. have derived and implemented a stochastic Navier-Stokes PC solver 
using finite-differences to investigate laminar fluid-flow and transport problems (Le 
Maitre et al. 2001, 2002).

‣  Xiu & Karniadakis have generalised the approach to other non-gaussian types of 
randomness and polynomials (Xiu & Karniadakis 2002) and have applied it to 
incompressible stochastic 2D (Xiu & Karniadakis 2003). Lucor has used the approach 
for 3D flows as well (Lucor 2004). 

‣ Asokan & Zabaras have developed a 2D stabilised finite element stochastic 
formulation by considering an extension of the deterministic variational multi-scale 
approach with algebraic subgrid scale modeling and applied it to natural convection 
problems (Asokan & Zabaras 2005). 

‣ Hou et al. (2006) have considered 2D Navier-Stokes equations (in a stream function-
vorticity formulation) driven by Gaussian Brownian motion . The have introduced a 
PC compression technique similar to the sparse tensor products approach developed 
by Schwab (Frauenfelder et al. 2005) to handle the constant flux of new random 
variables due to the Brownian motion.
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Figure 27: Mesh4: 708 elements triangular grid in the x − y plane; [x × y] = [(−22D; 55D) ×
(−22D; 22D)].

spanwise force coefficients is presented in Figure 33.
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Figure 28: Time evolution of span-averaged deterministic and mean lift coefficient CL solutions
for different p. Re = 300; σu = 0.05.

Figures 35 and 36 show the time evolution of the span-averaged values of the variance of the

lift and drag coefficients for different resolutions in random space. Those Figures relate to Figures

37, 38. and 39.

Results for the random lift forces are qualitatively similar to the two-dimensional simulations.

The mean solutions amplitude are lower than the deterministic solution and tend to small values

after about 6 periods. The variance grows from a zero value and reaches some kind of intermediate

Calcul DNS d’interaction fluide-structure:
écoulement incertain 3D autour d’un cylindre circulaire fixe

U∞ = U∞ + σUξ

Distribution uniforme (polynômes de 
Legendre, p=6);
maillage: 708 éléments;
espace physique (x-y: polynômes de 
Jacobi d’ordre 6; z: 8 modes Fourier).

Re =
d U∞

ν
= 300

σU = 5% U∞

Lz = 4π



2D & 3D calculations of steady or transient single-phase, incompressible, 

laminar or turbulent flows

Spectral/hp Element approach & Spectral/hp-Fourier Element approach

High-order 3-step time integration splitting scheme

No turbulence model (DNS)

Any kind of mesh (structured, unstructured, hybrid) moving or not.

Mapping (linear structure) or ALE (non-linear structure) formulation

Nεκtαr  C/C++ parallel CFD code developed by Pr. G. Karniadakis 
and his team at Brown University RI USA.



FSI: Mapping approach
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or more compactly
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The 3 × 3 matrix A is easily invertible analytically. The Newmark scheme is unconditionally

stable, second order accurate. If instead of F̂n
l+1

, F̂n
l

is used (because we are lagging the flow

solver), an order O(δt3) error is introduced for ξ̂n - this is less than the order of the scheme. ˙̂ξn

incurs an extra O(δt2) error and only the extra error in ¨̂ξn (O(δt)) is higher than second order.

In a stationary, Cartesian coordinate system (x′, y′, z′) the non-dimensionalized incompressible

Navier-Stokes equations (in convective form) are:

∂u′

∂t′
+ (u′ ·∇)u′ = −∇p + Re−1∇2u′, (13a)

∇ · u′ = 0, (13b)

where Re = Ud/ν is the Reynolds number based on the free-stream velocity U and the cylinder

diameter d; ν is the kinematic viscosity.

We now consider a coordinate system attached to the moving cylinder. This maps the time-

dependent and deforming problem domain to a stationary and non-deforming one as shown in
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Figure 1: The coordinate system is attached to the moving flexible cylinder, producing an unde-
formed, stationary computational domain.

Figure 1. A convenient mapping is described by the following transformation:

x = x′ − χ(z′, t′), (14a)

y = y′ − η(z′, t′), (14b)

z = z′, (14c)

t = t′. (14d)

which changes our partial derivative operators as following:

∂

∂x′ =
∂

∂x
(15a)

∂

∂y′ =
∂

∂y
(15b)

∂

∂z′
=

∂

∂z
− ∂χ

∂z

∂

∂x
− ∂η

∂z

∂

∂y
(15c)

∂

∂t′
=

∂

∂t
− ∂χ

∂t

∂

∂x
− ∂η

∂t

∂

∂y
. (15d)

Accordingly, the velocity components and pressure are transformed as follows:

u = u′ − ∂χ

∂t
− w′ ∂χ

∂z
, (16a)

v = v′ − ∂η

∂t
− w′ ∂η

∂z
, (16b)

w = w′, (16c)

Moving flexible cylinder
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p = p′. (16d)

The Navier-Stokes equation and continuity equation are transformed to:

∂u
∂t

+ (u ·∇)u = −∇p + Re−1∇2u + A(Re,u, p, ξ), (17a)

∇ · u = 0, (17b)

where the forcing term A(Re,u, p, ξ) is the extra acceleration term introduced by the transfor-

mation, consisting of both inviscid and viscous contributions. In 2D flow, A(Re,u, p, ξ) has a

very simple form:

A = −∂2ξ

∂t2
(18)

which is not x or y dependent. For 3D flow A(Re,u, p, ξ) has a more complicated form:

Ax = −d2χ

dt2
+

1
Re

[
∂2

∂z′2

(
u +

∂χ

∂z
w

)
− ∂2u

∂z2
+
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∂z
∇2

xyw +
∂χ3

∂t∂z2

]
(19a)

Ay = −d2η

dt2
+

1
Re

[
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(
v +

∂η

∂z
w

)
− ∂2v
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xyw +
∂η3
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(19b)

Az =
∂χ

∂z

∂p

∂x
+

∂η

∂z

∂p

∂y
+ ν

[
∂2w

∂z′2
− ∂2w

∂z2

]
, (19c)

where for a more compact form of the equations we denote:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(20a)

∇2
xy =

∂2

∂x2
+

∂2

∂y2
. (20b)

Note that the incompressibility condition is unchanged in both 2D and 3D:

∂u′

∂x′ +
∂v′

∂y′ +
∂w′

∂z′
=

∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (21)

This is because the mapping produces no mesh divergence, ∂χ
∂x + ∂η

∂y = 0.
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For 2D flow or 3D moving rigid cylinder:
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then, the Equation (1) becomes:

∂2ξ(z, t)
∂t2

− c2 ∂2ξ(z, t)
∂z2

+ γ2 ∂4ξ(z, t)
∂z4

+
(4πζ

Vrn

)∂ξ(z, t)
∂t

+
( 2π

Vrn

)2
ξ(z, t) =

1
2

CF (z, t)
m

, (3)

where ξ(z, t) = (χ(z, t), η(z, t)) is the cylinder displacement with χ(z, t) being the inline displace-

ment and η(z, t) being the crossflow displacement, ζ is the damping fraction, and Vrn = U/fnD is

the reduced velocity based on the free-stream velocity U and the natural frequency fn in vacuum

of the structure. The mass ratio (non-dimensional linear density) is m = ρs/ρfD2 where ρls is

the structure’s linear density. The coefficients CF (z, t) = (CD(z, t), CL(z, t)) are the total non-

dimensional forces, i.e., including both pressure and viscous contributions. They represent the

drag coefficient CD for the inline motion and the lift coefficient CL for the crossflow motion of the

structure. They are obtained through the flow solver. Also, c =
√

T/ρsU2 and γ =
√

EI/ρsU2D2

are the non-dimensional cable and beam phase velocity, respectively. Practically, the structural

nature of the body is defined based on the simple criterion developed by Vandiver [37]). The

structure is said to be a cable if it is tension-dominated, i.e.

T

EIk2
> 30, (4)

otherwise it is said to be a beam and its bending stiffness should be taken into account. Here k is

the wave number describing the excitation mode.

If the cylinder is rigid (or in the case of a two-dimensional simulation) and is only allowed

to move in the crossflow direction, its motion has no spanwise z-dependence. Its displacement is

the solution of a single degree of freedom viscously damped second-order oscillator subject to the

external hydrodynamic forcing, i.e.

η̈(t) +
(4πζ

Vrn

)∂η(t)
∂t

+
( 2π

Vrn

)2
η(t) =

CL(t)
2m

, (5)

where η represents the crossflow cylinder response and CL(t) is the spanwise-averaged local lift
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to move in the crossflow direction, its motion has no spanwise z-dependence. Its displacement is

the solution of a single degree of freedom viscously damped second-order oscillator subject to the

external hydrodynamic forcing, i.e.

η̈(t) +
(4πζ

Vrn

)∂η(t)
∂t

+
( 2π

Vrn

)2
η(t) =

CL(t)
2m

, (5)

where η represents the crossflow cylinder response and CL(t) is the spanwise-averaged local lift
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F̂n
l+1

, we use the following scheme:

¨̂ξn

l+1

+ 2εωn
˙̂ξn

l+1

+ ω2
n ξ̂n

l+1
=

1
m

F̂n
l+1

(11a)

ξ̂n
l+1

= ξ̂n
l
+ δt ˙̂ξn

l

+
δt2

2




¨̂ξn

l

+ ¨̂ξn

l+1

2



 (11b)

˙̂ξn

l+1

= ˙̂ξn

l

+ δt




¨̂ξn

l

+ ¨̂ξn

l+1

2



 , (11c)

or more compactly

A





¨̂ξn

˙̂ξn

ξ̂n





l+1

= B





¨̂ξn

˙̂ξn

ξ̂n





l

+
1
m





F̂n

0

0





l+1

. (12)

The 3 × 3 matrix A is easily invertible analytically. The Newmark scheme is unconditionally

stable, second order accurate. If instead of F̂n
l+1

, F̂n
l

is used (because we are lagging the flow

solver), an order O(δt3) error is introduced for ξ̂n - this is less than the order of the scheme. ˙̂ξn

incurs an extra O(δt2) error and only the extra error in ¨̂ξn (O(δt)) is higher than second order.

In a stationary, Cartesian coordinate system (x′, y′, z′) the non-dimensionalized incompressible

Navier-Stokes equations (in convective form) are:

∂u′

∂t′
+ (u′ ·∇)u′ = −∇p + Re−1∇2u′, (13a)

∇ · u′ = 0, (13b)

where Re = Ud/ν is the Reynolds number based on the free-stream velocity U and the cylinder

diameter d; ν is the kinematic viscosity.

We now consider a coordinate system attached to the moving cylinder. This maps the time-

dependent and deforming problem domain to a stationary and non-deforming one as shown in

Newmark integration scheme: 
(unconditionally stable, 2nd order)
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coefficient.

The representation of Equation (3) in Fourier space becomes:

∂2ξ̂(k, t)
∂t2

+ c2k2ξ̂(k, t) + γ2k4ξ̂(k, t) +
(4πζ

Vrn

)∂ξ̂(k, t)
∂t

+
( 2π

Vrn

)2
ξ̂(k, t) =

1
2

ĈF (k, t)
m

, (6)

where the wave number k = 2πn
LZ

and LZ is the length of the structure in the spanwise direction.

For the n-th Fourier mode of the structure, we have:

∂2ξ̂n

∂t2
+ c2

(
2π
LZ

)2

n2ξ̂n + γ2

(
2π
LZ

)4

n4ξ̂n +
(4πζ

Vrn

)∂ξ̂n

∂t
+

( 2π
Vrn

)2
ξ̂n =

1
2

ĈFn

m
, (7)

The nice feature of this representation is that the homogeneous parts of the equations for the

modes are decoupled (any coupling comes from the external force term). In the absence of an

external forcing, the natural frequency of the oscillation for the n-th Fourier mode is:

ω2
n = β2 + c2

(
2π
LZ

)2

n2 + γ2

(
2π
LZ

)4

n4 (8)

If the structure is pinned at both ends (zero Dirichlet: ξ = 0), then a Fourier sine series can

be used instead and the equations become:

∂2ξ̂n

∂t2
+ c2

(
π

LZ

)2

n2ξ̂n + γ2

(
π

LZ

)4

n4ξ̂n +
(4πζ

Vrn

)∂ξ̂n

∂t
+

( 2π
Vrn

)2
ξ̂n =

1
2

ĈFn

m
, (9)

for the n-th sine Fourier mode (sin(kz)) of the structure where the wave number k = πn
LZ

. This

is accomplished by projecting the forces into a Fourier sine-series that gives zero contributions

at the two ends. This time, in the absence of an external forcing, the natural frequency of the

oscillation for the n-th sine Fourier mode is:

ω2
n = β2 + c2

(
π

LZ

)2

n2 + γ2

(
π

LZ

)4

n4. (10)

For the nth Fourier mode:
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Fourier decomposition:

u(x, y, z, t) =
∑

k

ûk(x, y, t)eikz

Fourier modes are decoupled 
except for the non-linear terms 
(use of 3/2 dealiasing rule)

Hierarchical structures:
easy parallelization of the code! 
Each processor computes one Fourier mode.

k =
2πn

Lz



Time integration algorithm: High-order splitting scheme

Compute advective terms and 
advance the solution with a stiffly-
stable multi-step integrator

3-substep splitting scheme:

240

pressible Navier Stokes equations,

∂u
∂t

= −∇P + νL(u) + N(u) in Ω

∇ · u = 0 (3)

where

L(u) = ∇2u; ω = ∇× u

N(u) = u × ω; P = p +
1
2
∇(u · u) (4)

The non-linear operator N(u) has been written in rotational form to minimize the number of

derivative evaluations (6 vs. 9 for the convective form). A semi-implicit time integrator is used

to integrate the system (3), (4) by using a 3-substep splitting scheme [123]:

û −
∑Ji−1

q=0 αqun−q

∆t
=

Je−1∑

q=0

βqN(un−q) (5)

ˆ̂u − û
∆t

= −∇P̄n+1 (6)

γ0un+1 − ˆ̂u
∆t

= ν∇2un+1 (7)

The time-stepping algorithm can then be summarized in three steps:

1. Calculate the advective terms eqn. (4) and advance the solution in time using a stiffly-stable

multi-step integrator.

2. Solve a Poisson equation for the dynamic pressure P to satisfy the divergence-free condition

for the solution. Consistent pressure boundary conditions are used to ensure stability and

high order accuracy [123].

3. Implicitly solve the viscous terms, advancing the solution to the next timestep. This gives
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multi-step integrator.

2. Solve a Poisson equation for the dynamic pressure P to satisfy the divergence-free condition

for the solution. Consistent pressure boundary conditions are used to ensure stability and

high order accuracy [123].

3. Implicitly solve the viscous terms, advancing the solution to the next timestep. This gives

Navier-Stokes equations:

Solve Poisson equation for dynamic pressure P to 
satisfy the divergence-free condition for the solution. 
Modify pressure BCs to ensure high-order accuracy.

Implicitly solve the viscous terms: 2D Helmholtz 
equation for each velocity component (direct solvers).



Coupling schemes algorithm
1. Flow Fln solver & structure Sn solver states at tn.  We already know Cdn & Cln.

2. Compute the contributions of the non-linear terms and the extra 
acceleration-forcing term A(Re,u,v,w,p,ξ) using the same time integration 
scheme.

3. Use the structure’s state Sn (velocity, acceleration) to adjust the time-accurate 
pressure boundary conditions.

4. Solve a Poisson equation to compute the pressure p. This step enforces the 
continuity constraint. The gradient of p is added to the non-linear terms.

5. Advance the structure’s state to Sn+1 by using Cdn & Cln (viscous & pressure 
contribution).

6. Use the structure’s velocity to adjust velocity Dirichlet boundary conditions.

7. Compute implicitly the viscous correction.

8. Compute the new forces Cdn+1 & Cln+1 knowing Fln+1.



Formulation de la Méthode PC pour les 
équations de Navier-Stokes Stochastiques 3D

Chapter 8

Generalized Polynomial Chaos

Formulation

1 Incompressible Navier-Stokes Equations

1.1 Governing Equations

In this section we present the solution procedure for solving the stochastic Navier-Stokes equations

by use of a generalized Polynomial Chaos expansion. Moreover, we assume that the flow has one

homogeneous direction. In this direction, a Fourier expansion is used providing a natural parallel

paradigm. The randomness in the solution can be introduced through boundary conditions, initial

conditions, forcing, etc..

We employ the incompressible Navier-Stokes equations:

∇ · u = 0, (1)

∂u
∂t

+ (u ·∇)u = −∇Π + Re−1∇2u, (2)

where u is the velocity field, Π is the pressure and Re the Reynolds number. All flow quantities,
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i.e., velocity and pressure are considered stochastic processes. A random dimension, denoted by

the parameter θ, is introduced in addition to the spatial-temporal dimensions (X, t), thus

u = u(X, t, θ); Π = Π(X, t, θ). (3)

We apply the generalized polynomial chaos expansion to these random quantities and obtain:

u(X, t; θ) =
P∑

j=0

uj(X, t)Φj(ξ(θ)); Π(X, t; θ) =
P∑

j=0

Πj(X, t)Φj(ξ(θ)), (4)

with:

P = 1 +
p∑

s=1

1
s!

s−1∏

r=0

(n + r) (5)

If we assume that the deterministic coefficients uj(X, t) and Πj(X, t) of the expansion are periodic

in the z-direction, we may use a Fourier expansion:

uj(X, t) = uj(x, y, z, t) =
M−1∑

m=0

ujm(x, y, t)eiβmz,

Πj(X, t) = Πj(x, y, z, t) =
M−1∑

m=0

Πjm(x, y, t)eiβmz, (6)

that we combine with the generalized Polynomial Chaos expansion:

u(X, t; θ) =
P∑

j=0

M−1∑

m=0

ujm(x, y, t)eiβmzΦj(ξ(θ)),

Π(X, t; θ) =
P∑

j=0

M−1∑

m=0

Πjm(x, y, t)eiβmzΦj(ξ(θ)). (7)

Substituting equations (7) into Navier-Stokes equations we obtain the following equations

P∑

j=0

(
∇ ·

M−1∑

m=0

ujmeiβmz
)
Φj = 0, (8)

P∑

j=0

M−1∑

m=0

∂ujm

∂t
eiβmzΦj +

P∑

j=0

P∑

k=0

[( M−1∑

m=0

ujmeiβmz ·∇
) M−1∑

l=0

ukle
iβlz

]
ΦjΦk
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Expansion de Fourier  
des coefficients le long 
de la direction axiale

Décomposition PC de la solution dans l’espace aléatoire:
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= −
P∑

j=0

∇
M−1∑

m=0

ΠjmeiβmzΦj + Re−1
P∑

j=0

∇2
M−1∑

m=0

ujmeiβmzΦj . (9)

We now take the Fourier transform of equations 8 and 9 to get the coefficient equation for

each Fourier mode m of the expansion

P∑

j=0

∇ · ujmΦj = 0, (10)

P∑

j=0

∂ujm

∂t
Φj +

P∑

j=0

P∑

k=0

[
FFTm

(
N(u)

)]
ΦjΦk (11)

= −
P∑

j=0

∇̃ΠjmΦj + Re−1
P∑

j=0

Lm(ujm)Φj , m = 0 · · ·M − 1, (12)

where FFTm is the mth component of the Fourier transform of the non-linear terms and,

N(u) =
( M−1∑

m=0

ujmeiβmz ·∇
) M−1∑

l=0

ukle
iβlz (13)

∇̃ = (
∂

∂x
,

∂

∂y
, imβ)

Lm(ujm) = (
∂2

∂x2
+

∂2

∂y2
− β2m2)ujm. (14)

To maintain computational efficiency the non-linear product is calculated in physical space

while the rest of the algorithm may be calculated in transformed space. The non-linear term is

computed using a dealiasing 3/2 rule.

Similarly to what was done in Part II for the stochastic ODEs, we then project the above

equations onto the random space spanned by the basis polynomials {Φj} by taking the inner

product of above equation with each basis. By taking < ·,Φn > and utilizing the orthogonality

condition (5), we obtain the following set of equations:

For each n = 0, . . . P and each m = 0, . . . M − 1,

∇ · unm = 0, (15)
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i.e., velocity and pressure are considered stochastic processes. A random dimension, denoted by

the parameter θ, is introduced in addition to the spatial-temporal dimensions (X, t), thus

u = u(X, t, θ); Π = Π(X, t, θ). (3)

We apply the generalized polynomial chaos expansion to these random quantities and obtain:

u(X, t; θ) =
P∑

j=0

uj(X, t)Φj(ξ(θ)); Π(X, t; θ) =
P∑

j=0

Πj(X, t)Φj(ξ(θ)), (4)

with:

P = 1 +
p∑

s=1

1
s!

s−1∏

r=0

(n + r) (5)

If we assume that the deterministic coefficients uj(X, t) and Πj(X, t) of the expansion are periodic

in the z-direction, we may use a Fourier expansion:

uj(X, t) = uj(x, y, z, t) =
M−1∑

m=0

ujm(x, y, t)eiβmz,

Πj(X, t) = Πj(x, y, z, t) =
M−1∑

m=0

Πjm(x, y, t)eiβmz, (6)

that we combine with the generalized Polynomial Chaos expansion:

u(X, t; θ) =
P∑

j=0

M−1∑

m=0

ujm(x, y, t)eiβmzΦj(ξ(θ)),

Π(X, t; θ) =
P∑

j=0

M−1∑

m=0

Πjm(x, y, t)eiβmzΦj(ξ(θ)). (7)

Substituting equations (7) into Navier-Stokes equations we obtain the following equations

P∑

j=0

(
∇ ·

M−1∑

m=0

ujmeiβmz
)
Φj = 0, (8)

P∑

j=0

M−1∑

m=0

∂ujm

∂t
eiβmzΦj +

P∑

j=0

P∑

k=0

[( M−1∑

m=0

ujmeiβmz ·∇
) M−1∑

l=0

ukle
iβlz

]
ΦjΦk
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Après substitution dans Navier-Stokes:

Après avoir pris la transformée de Fourier des équations:

“Double représentation 
spectrale”: Fourier/PC

Approche INTRUSIVE
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= −
P∑

j=0

∇
M−1∑
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ΠjmeiβmzΦj + Re−1
P∑

j=0

∇2
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We now take the Fourier transform of equations 8 and 9 to get the coefficient equation for

each Fourier mode m of the expansion
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∇̃ΠjmΦj + Re−1
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where FFTm is the mth component of the Fourier transform of the non-linear terms and,

N(u) =
( M−1∑

m=0

ujmeiβmz ·∇
) M−1∑

l=0

ukle
iβlz (13)

∇̃ = (
∂

∂x
,

∂

∂y
, imβ)

Lm(ujm) = (
∂2

∂x2
+

∂2

∂y2
− β2m2)ujm. (14)

To maintain computational efficiency the non-linear product is calculated in physical space

while the rest of the algorithm may be calculated in transformed space. The non-linear term is

computed using a dealiasing 3/2 rule.

Similarly to what was done in Part II for the stochastic ODEs, we then project the above

equations onto the random space spanned by the basis polynomials {Φj} by taking the inner

product of above equation with each basis. By taking < ·,Φn > and utilizing the orthogonality

condition (5), we obtain the following set of equations:

For each n = 0, . . . P and each m = 0, . . . M − 1,

∇ · unm = 0, (15)
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180

∂unm

∂t
+

1
< Φ2

n >

P∑

j=0

P∑

k=0

ejkn

[
FFTm

(
N(u)

)]
= −∇̃Πnm + Re−1Lm(unm), (16)

where ejkn =< ΦjΦkΦn >. The set of equations consists of (P + 1) system of deterministic

‘Navier-Stokes-like’ equations for each random mode coupled through the convective terms.

Discretization in space and time can be carried out by any conventional method. Here we

employ the spectral/hp element method in space in order to have better control of the numerical

error [26]. The high-order splitting scheme together with properly defined consistent pressure

boundary conditions are employed in time [123]. In particular, the spatial discretization is based

on Jacobi polynomials on triangles or quadrilaterals in two-dimensions, and tetrahedra, hexahedra

or prisms in three-dimensions.

1.2 Post-Processing

After solving for the deterministic expansion coefficients, we obtain the analytical form (in random

space) of the solution process. It is possible to perform a number of analytical operations on the

stochastic solution in order to carry out other analysis such as the sensitivity analysis. The mean

solution is contained in the expansion term with index of zero. The second-moment, i.e., the

covariance function is given by

Ruu(X1, t1;X2, t2) = < u(X1, t1) − u(X1, t1),u(X2, t2) − u(X2, t2) >

=
P∑

j=1

[
uj(X1, t1)uj(X2, t2) < Φ2

j >
]
. (17)

The variance of the solution is obtained as:

V ar (u(X, t)) = <
(
u(X, t) − u(X, t)

)2
>

=
P∑

j=1

[
u2

i (X, t) < Ψ2
j >

]
(18)
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Formulation de la Méthode PC pour les 
équations de Navier-Stokes Stochastiques 3D

avec

Après projection sur la base du PC:
on a, pour chaque mode Fourier m, et pour chaque mode chaos n:

Calcul des corrélations:
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Figure 1: Mesh3: 412 elements triangular grid in the x − y plane; [x × y] = [(−15D; 25D) ×
(−9D; 9D)].

tends to an almost constant value in time as p increases. Figure 3 shows the time evolution of the
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Figure 2: Time history of deterministic and mean lift (left) and drag (right) coefficients for
different values of p. Inflow velocity: u = ū + σuξ; v = 0; ū = 1.0 and σu = 0.05; Re = 50.

variance of the lift (left) and drag (right) coefficients for different resolutions in random space.

Mean lift and drag exhibit oscillatory behavior similar to the deterministic solution. The mean lift

decays to an almost zero value after about 8 shedding periods for any resolution p. The mean drag

is larger than the deterministic one and tends to an almost constant value in time as p increases.

Because both the initial condition and inflow boundary condition for the crossflow component of

the flow v are deterministic, the variance of the lift coefficient is zero at the initial time of the

computation. However, energy is initially injected in the streamwise component of the flow u

through the random inflow boundary condition which explained the positive value of the variance

of the drag coefficient at the initial time. The variance of the lift coefficient increases to a certain

level after about 8 shedding periods for any resolution p. After this time, the behavior depends

Source d’incertitude à 
l’écoulement amont

Mouvement déterministe 
du cylindre est imposé

U∞ = U∞ + σUξ

Re =

d U∞

ν

30%

20%

10%

0%

Modification importante de la distribution et de 
l’arrangement des tourbillons de sillage de 
l'écoulement moyen.

Le lâcher tourbillonnaire de type (P+S) se 
transforme en une allée régulière de type von 
Kàrmàn (2S).

Pour un même niveau d’incertitude le 
phénomène s’accentue avec le nombre de 
Reynolds. 

Lucor & Karniadakis, Phys. Rev. Lett. (2005).

We then substitute into the Navier-Stokes equations, and
subsequently we project the obtained equations onto the
random space spanned by the GPC basis. That is, we take
the inner product with each basis and use the orthogon-
ality condition to simplify the equations. We obtain a
discrete set of deterministic equations for each of the
random modes, k ! 0; 1; . . . ; P:

r " uk ! 0

@uk
@t

!#
XP

i!0

XP

j!0

eijk
h!2

ki
$ui "r%uj #rpk & !r2uk;

(6)

where eijk ! h!i!j!ki. The above set of deterministic
$P& 1% ‘‘Navier-Stokes–like’’ equations for each random
mode is only coupled through the convective terms. The
inflow velocity takes the form of a stationary uniform
random variable and is U$"% ! U& #U$$"%; V ! 0,
where $ is a uniform random variable of zero mean and
unit variance. The cylinder motion is imposed in a purely
deterministic manner. The above equations are solved
using a mapping approach based on a technique devel-
oped in [11]. For a two-dimensional flow, this mapping
transformation amounts to an adjustment of flow velocity
by the cylinder velocity, which is deterministic in our
application. The transformation adds an extra forcing
term to the Navier-Stokes equations, which is the cylinder
acceleration in the cross-flow direction; we only assume
transverse oscillations here. Discretization in space and
time can be carried out by any numerical method; here
we use the spectral/hp element method in space in order
to have better control of the numerical error coming from
the deterministic part of model [12]. The high-order
splitting scheme based on consistent pressure boundary
conditions is employed for time discretization [12]. In
particular, the spatial discretization is based on Jacobi
polynomials of order 6 employed on 708 triangular ele-
ments. With respect to resolution in random space, a
convergence study showed that for a uniform distribution
Legendre polynomials of order p ! 15 are adequate for
the highest noise level employed in our simulations
(30%). More details of GPC and discretization along
with verification studies can be found in [13].

We first simulated Re ! 140 and tested different levels
of noise. The cylinder is forced to oscillate in a purely
harmonic deterministic motion with amplitude A=d !
1:0 and reduced velocity based on the excitation fre-
quency Vrn ! Ud=fe ! 7:5. This choice of parameters
leads to a P& S shedding mode in deterministic simula-
tions, i.e., in the absence of noise at the inflow. The
experimental results of Williamson and Roshko [3] in-
dicate a 2P mode for these conditions but at a larger
Reynolds number. In our deterministic simulations, a 2P
mode is first excited, but it switches to a P& S mode after
a while. At high Reynolds number previous simulations
have demonstrated that the 2P shedding mode is the

preferred flow state; see [14]. Visualizations of determin-
istic vorticity at different instants within one shedding
cycle and spectral analysis of the cylinder forces indicate
that we obtain a stable P& S sheding mode. The top
image in Fig. 1 shows an example of the P& S shedding
mode at y=d ! 0 with one pair (P1) of vortices (I and II)
shed from the cylinder upper side and one single (S1)
vortex shed from the lower side.

We now present results from the stochastic simulations.
The lower three images in Fig. 1 show instantaneous
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FIG. 1. Comparison between deterministic (top) and stochas-
tic mean instantaneous vorticity fields for different levels of
noise #U at identical time and y=d ! 0; #U ! 10% U (second);
#U ! 20% U (third); #U ! 30% U (bottom). Re ! 140;
p ! 15.
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Ecoulement incertain autour d’un cylindre oscillant

σU



écoulement incertain 2D autour d’un cylindre 
circulaire oscillant forcé

Champ de vorticité instantanée 

Re =
d U∞

ν
= 400

σU = 10% U∞

Solution déterministe; Mode P+S

Solution moyenne; Mode 2S



écoulement incertain 2D autour d’un cylindre 
circulaire oscillant forcé

Valeur RMS du Champ de vorticité 
instantanée 

Lucor & Karniadakis, PRL, (2005).



Fonctions de densité de probabilité 
instantanées

Déplacement vertical du cylindre

Pression au point d’arrêt

Lucor et al, IJNMF, (2003).



Distribution polaire de la pression à la 
surface du cylindre durant le cycle 

d’oscillation

U∞ = U∞ + σUξ
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Figure 27: Mesh4: 708 elements triangular grid in the x − y plane; [x × y] = [(−22D; 55D) ×
(−22D; 22D)].

spanwise force coefficients is presented in Figure 33.
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Figure 28: Time evolution of span-averaged deterministic and mean lift coefficient CL solutions
for different p. Re = 300; σu = 0.05.

Figures 35 and 36 show the time evolution of the span-averaged values of the variance of the

lift and drag coefficients for different resolutions in random space. Those Figures relate to Figures

37, 38. and 39.

Results for the random lift forces are qualitatively similar to the two-dimensional simulations.

The mean solutions amplitude are lower than the deterministic solution and tend to small values

after about 6 periods. The variance grows from a zero value and reaches some kind of intermediate

Interaction fluide-structure:
écoulement incertain 3D autour d’un cylindre 
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PC-based methods applied to turbulence:

There have been several attempts to apply the PC approach to 
turbulence.

‣ Approach was suggested in the early works of  Wiener in 1939.

‣ During the 1960’s, several proposals have been suggested to develop a theory of 
turbulence involving a truncated Wiener–Hermite expansion of the velocity field (Orszag 
& Bissonnette 1967; Meecham & Jeng 1968; Crow & Canavan 1970; Canavan 2001; Chorin 
1974). The Hermite polynomial basis was used thanks to a Quasi-Normal hypothesis. 

‣ All these works failed in the sense that the truncated expansion yields non-physical kinetic 
energy spectra. 

‣ Due to its chaotic nature, a very large number of degrees of freedom are excited by the 
turbulent dynamics and the PC expansion is observed to converge very slowly. The direct 
decomposition of the instantaneous turbulent field onto a classical PC approach can not 
be considered as an efficient way to address the issue of the sensitivity of a simulated 
turbulent flow. 

‣ Different solutions have been proposed that might mitigate those effects: adaptive 
truncation strategy or an adaptive decomposition based on local basis combined with local 
refinement techniques: Le Maitre et al. (2004): a multi-wavelet based decomposition 
(Wiener–Haar); Wan & Karniadakis (2005): an adaptive multi-element gPC is formulated 
improving drastically the effectiveness of the gPC representation as exemplified for the 
Kraichnan–Orszag three-mode turbulence problem (Orszag & Bissonnette 1967).

‣ What is proposed here is to preclude the problem mentioned above by considering the 
statistical moments of the simulated turbulence field (or related quantities such as the 
kinetic energy spectrum) as functions of the uncertain parameters.



DNS (3843): isovaleurs de vorticité à t=0.6 

Reλ = 100

the evolution of the initial velocity field toward a physically

realistic turbulent velocity field. Primarily, in this time frame

phase correlations are developing properly among the Fou-

rier modes. Indeed, although the initial velocity field satisfies

the continuity equation and corresponds to a relevant energy

spectrum, the phases of the initial velocity are random and

the initial and short-time fields do not correspond to a physi-

cal flow.

In Fig. 4!d", the skewness of the longitudinal velocity
derivative is shown. Again, the transition region is clearly

visible in which the skewness evolves from 0 to a value of

about !0.5. This is in good agreement with other data on the
skewness of the longitudinal velocity derivative, which range

for moderate to high Reynolds numbers from36 !0.3 to
!0.9. After the transition region, the skewness is nearly con-
stant in time in case Re#"100. This indicates the existence
of a universal equilibrium range.37 For Re#"50 the skewness
varies considerably more, which indicates that this Reynolds

number is too low to display a universal equilibrium range.

C. The LES approach: Fundamentals and simulation
setup

In this section we formulate the incompressible LES ap-

proach that is followed here and describe the setup of the

individual large-eddy simulations.

The filtered, incompressible Navier–Stokes equations

can be written as

$ tū i#$ j! ū iū j"#$ i p̄!
2

Re
$ jS̄ i j"$ j% i j, i"1, 2, 3,

!11"

where the spatial convolution filter is denoted by (•) and the
filtered solution is given by &ū i , p̄'. The filtering of the con-
vective terms gives rise to the divergence of the turbulent

stress tensor

% i j" ū iū j!uiu j. !12"

In addition,

S̄ i j"
1

2
! $ ū i
$x j

#
$ ū j
$xi

" !13"

denotes the filtered rate of strain tensor. Since the left-hand

side of Eq. !11" corresponds to the Navier–Stokes operator
NS acting on the filtered solution &ū i , p̄' !instead of &ui ,p'),
the large-eddy approach can be expressed in short-hand no-

tation as

NS! ū i""
$% i j
$xi

. !14"

Hence, the filtered solution obeys Navier–Stokes dynamics

in which the subgrid-scale stress term is responsible for the

smoothing of the turbulent flow and pressure fields. Although

the filter determines all aspects of the closure problem for

% i j , in virtually all actual large-eddy simulations the filter
operator has only formal significance and is not performed

explicitly in a simulation.24 Ideally, the filter information

should be retained in explicit models of the turbulent stress

tensor. In practice, this is not the case and most existing

subgrid models only indirectly contain features of the

adopted filter such as the filter width (.
In this paper we adopt the Smagorinsky subgrid model

mij
S which implies

% i j→mij
S "2!CS("2)!*2 S̄ i jS̄ i j+, S̄ i j , !15"

where *•+ denotes a volume average. In this model the
smoothing of the solution is governed by the product of the

Smagorinsky constant CS and the filter-width (. The value of
the Smagorinsky constant can be estimated provided some

additional assumptions about the nature of the turbulent flow

are invoked. In literature various values have been sug-

gested, mainly ranging from CS"0.1 to CS"0.2, e.g., Refs.
38–40. However, we will not decide on a specific value for

CS here, but rather consider the product CS( as the relevant

parameter which we will refer to as the effective filter width.

An increase in the effective filter width will give rise to a

decrease in the wavenumber content of the numerical solu-

tions while the full turbulent flow is obtained in case the

effective filter width is reduced to zero.

Next to the effective filter width the grid spacing h of the

computational grid is an important parameter in the defini-

tion of the large-eddy approach. At constant effective filter

width a decrease in h will reduce the importance of discreti-

zation errors and gradually give rise to a ‘‘grid-independent’’

large-eddy solution corresponding to the Smagorinsky

model. The ratio (/h will be referred to as the subgrid reso-
lution. To achieve a good approximation of the grid-

independent solution a subgrid resolution of up to 6–8 may

be required.31 However, in most practical LES, the computa-

tional grid is not only considerably coarser than the corre-

sponding DNS grid, but—to reduce costs—also much

coarser than the dynamics of the LES equations would re-

quire for a ‘‘grid independent’’ solution. Typically, subgrid

resolutions of about 1–2 are adopted in applied flow re-

search. In the latter case the influence of spatial discretization

effects may be considerable. By systematically varying the

subgrid resolution one may infer the contaminating discreti-

zation effects from the database approach as we will show

momentarily.

For the Smagorinsky model, and similarly for other sub-

grid scale models, the !effective" filter width reduces the dy-
namic contents of the filtered Navier–Stokes equations )Eq.
!14", and only large turbulent scales remain in the LES so-
lution. Hence ( induces a truncation of the Navier–Stokes

dynamics. This article focuses on the use of finite difference

based discretization techniques. The emphasis is on deter-

mining the effects of numerics within the already truncated

dynamics, for a standard LES system comprised of a basic

spatial discretization and the Smagorinsky model.

The initialization of the individual large-eddy simula-

tions is similar to the DNS initialization outlined before. The

same prescribed energy spectrum is imposed and the same

random number series is used for the initialization of the

phases in order to be able to compare the solutions obtained

at different resolutions. In fact, consider two resolutions

characterized by n1 and n2 with n1$n2 . We generate the
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Figure 1. Energy decay of 323 LES with Smagorinsky constants ranging between 0 and 0.7.
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Figure 2. Energy spectra at t = 0.8 of 323 (a) and 483 (b) LES with Smagorinsky constants
ranging between 0 and 0.7. (—): low to medium Cs range (0 ≤ Cs ! 0.2); (−·): medium to high
Cs range (0.2 ! Cs ≤ 0.7).

the above-discussed monotonous decrease of E(k). To the left, E(k) does not change
monotonously with Cs. Obviously, for higher settings of Cs, one can appreciate that the
‘common point’ disappears. In our opinion, these observations are quite intriguing and
need some further discussion.

In high Reynolds number turbulence, it is well known that the large-scale flow features
are independent of the small-scale dissipation mechanism which converts the turbulent
kinetic energy into heat (see e.g. Pope (2000); Frisch (1995)). Hence, a change in the
dissipation mechanism (e.g., small variations in the viscosity), does not reflect on the
large scales, but rather, the small-scale energy distribution automatically adjusts, such
that the overall turbulent kinetic energy balance is maintained. In LES, these properties
allow from a conceptual point of view to replace the classical Navier–Stokes dissipa-
tion mechanism with a subgrid-scale closure. The LES aim is to reproduce the effect of
the smallest turbulent scales in a computational more affordable way. Even though at
marginal resolutions, and ‘imperfect’ subgrid-scale models, this ideal separation between
the dissipation mechanism and the large scales is not present, some of its features ap-

LES filter width magnitude of the filtered 
strain rate tensor



the evolution of the initial velocity field toward a physically

realistic turbulent velocity field. Primarily, in this time frame

phase correlations are developing properly among the Fou-

rier modes. Indeed, although the initial velocity field satisfies

the continuity equation and corresponds to a relevant energy

spectrum, the phases of the initial velocity are random and

the initial and short-time fields do not correspond to a physi-

cal flow.

In Fig. 4!d", the skewness of the longitudinal velocity
derivative is shown. Again, the transition region is clearly

visible in which the skewness evolves from 0 to a value of

about !0.5. This is in good agreement with other data on the
skewness of the longitudinal velocity derivative, which range

for moderate to high Reynolds numbers from36 !0.3 to
!0.9. After the transition region, the skewness is nearly con-
stant in time in case Re#"100. This indicates the existence
of a universal equilibrium range.37 For Re#"50 the skewness
varies considerably more, which indicates that this Reynolds

number is too low to display a universal equilibrium range.
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proach that is followed here and describe the setup of the

individual large-eddy simulations.

The filtered, incompressible Navier–Stokes equations

can be written as
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where the spatial convolution filter is denoted by (•) and the
filtered solution is given by &ū i , p̄'. The filtering of the con-
vective terms gives rise to the divergence of the turbulent

stress tensor
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In addition,
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denotes the filtered rate of strain tensor. Since the left-hand

side of Eq. !11" corresponds to the Navier–Stokes operator
NS acting on the filtered solution &ū i , p̄' !instead of &ui ,p'),
the large-eddy approach can be expressed in short-hand no-

tation as

NS! ū i""
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$xi

. !14"

Hence, the filtered solution obeys Navier–Stokes dynamics

in which the subgrid-scale stress term is responsible for the

smoothing of the turbulent flow and pressure fields. Although

the filter determines all aspects of the closure problem for

% i j , in virtually all actual large-eddy simulations the filter
operator has only formal significance and is not performed

explicitly in a simulation.24 Ideally, the filter information

should be retained in explicit models of the turbulent stress

tensor. In practice, this is not the case and most existing

subgrid models only indirectly contain features of the

adopted filter such as the filter width (.
In this paper we adopt the Smagorinsky subgrid model

mij
S which implies
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where *•+ denotes a volume average. In this model the
smoothing of the solution is governed by the product of the

Smagorinsky constant CS and the filter-width (. The value of
the Smagorinsky constant can be estimated provided some

additional assumptions about the nature of the turbulent flow

are invoked. In literature various values have been sug-

gested, mainly ranging from CS"0.1 to CS"0.2, e.g., Refs.
38–40. However, we will not decide on a specific value for

CS here, but rather consider the product CS( as the relevant

parameter which we will refer to as the effective filter width.

An increase in the effective filter width will give rise to a

decrease in the wavenumber content of the numerical solu-

tions while the full turbulent flow is obtained in case the

effective filter width is reduced to zero.

Next to the effective filter width the grid spacing h of the

computational grid is an important parameter in the defini-

tion of the large-eddy approach. At constant effective filter

width a decrease in h will reduce the importance of discreti-

zation errors and gradually give rise to a ‘‘grid-independent’’

large-eddy solution corresponding to the Smagorinsky

model. The ratio (/h will be referred to as the subgrid reso-
lution. To achieve a good approximation of the grid-

independent solution a subgrid resolution of up to 6–8 may

be required.31 However, in most practical LES, the computa-

tional grid is not only considerably coarser than the corre-

sponding DNS grid, but—to reduce costs—also much

coarser than the dynamics of the LES equations would re-

quire for a ‘‘grid independent’’ solution. Typically, subgrid

resolutions of about 1–2 are adopted in applied flow re-

search. In the latter case the influence of spatial discretization

effects may be considerable. By systematically varying the

subgrid resolution one may infer the contaminating discreti-

zation effects from the database approach as we will show

momentarily.

For the Smagorinsky model, and similarly for other sub-

grid scale models, the !effective" filter width reduces the dy-
namic contents of the filtered Navier–Stokes equations )Eq.
!14", and only large turbulent scales remain in the LES so-
lution. Hence ( induces a truncation of the Navier–Stokes

dynamics. This article focuses on the use of finite difference

based discretization techniques. The emphasis is on deter-

mining the effects of numerics within the already truncated

dynamics, for a standard LES system comprised of a basic

spatial discretization and the Smagorinsky model.

The initialization of the individual large-eddy simula-

tions is similar to the DNS initialization outlined before. The

same prescribed energy spectrum is imposed and the same

random number series is used for the initialization of the

phases in order to be able to compare the solutions obtained

at different resolutions. In fact, consider two resolutions

characterized by n1 and n2 with n1$n2 . We generate the
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‣ Investigation of the effect of uncertainty at the inflow on the stability of vortex 
modes in flows past a circular cylinder which is deterministically forced to 
oscillate.

‣ The sensitivity methodology relies on the intrusive approach of the gPC-DNS 
method. The deterministic part of the flow-structure solver uses hp spectral 
method in order to allow for fast convergence, small diffusion and dispersion 
errors + flexible resolution for refinements. 

‣ There is a shift from a P+S pattern to a 2S mode in the presence of this 
uncertainty (uniform distribution)

‣ Study of the sensitivity of LES to parametric uncertainties in the subgrid-scale 
model. Study of the sensitivity of the LES statistical moments of decaying 
homogeneous isotropic turbulence to the uncertainty in the Smagorinsky model 
free parameter Cs (Smagorinsky constant). 

‣ It relies on the non-intrusive approach of the gPC method. The analysis is carried 
out for different grid resolutions and Cs distributions. 

‣ The different turbulent scales of the LES solution respond differently to the 
variability in Cs. The study of the relative turbulent kinetic energy distributions for 
different Cs distributions indicates that small scales are mainly affected and adapt 
to the changes in the subgrid model parametric uncertainty.

Conclusions


