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Uncertainty Quantification (UQ)

Modeling errors/uncertainties, numerical errors and 
data errors/uncertainties can interact. This brings the 
need for uncertainty quantification.

Need to access the impact of uncertain data on 
simulation outputs.

In case of the lack of a reference solution, the validity 
of the model can be established only if uncertainty in 
numerical predictions due to uncertain input 
parameters can be quantified.

Difficulty: instead of looking for the unique solution of 
a single deterministic problem, one is now interested 
in finding and parameterizing the space of all possible 
solutions spanned by the uncertain parameters.



Sources d’incertitudes

paramètres/constantes de 
simulation, conditions 
d'opération

coefficients de transport, 
propriétés physiques

géométrie

conditions aux bords, 
conditions initiales

lois de comportement, 
schéma numériques

Ecoulement au bord incertain 
(processus stochastique)

conditions aux limites 
incertaines

paramètres structure 
incertains



Méthodes statistiques (non déterministes)
Monte-Carlo: convergence en 1/√N, taux de convergence ne depends pas du 
nombre de variables aleatoires.

Monte-Carlo et ses variantes: tirages descriptifs, hypercube, optimal Latin 
hypercube (Latin Hypercube Sampling, Quasi-Monte Carlo [QMC] method, Markov Chain Monte Carlo 
method [MCMC],  importance sampling, correlated sampling, conditional sampling, Variance reduction technique, 
Response Surface Method [RSM]).

Méthodes non-statistiques (directes)
Développement en séries de Taylor ou méthode des perturbations (1er ou 2nd ordre).

Méthode itérative ou séries de Neumann et méthode d’intégrale pondérée.

Méthode spectrale et méthode de développements orthogonaux: Polynômes de 
Chaos (PC-Chaos Homogène-Chaos Hermite, Generalized Polynomial Chaos [gPC]-Chaos Askey), 

expansion de Karhunen Loève.

Représentation des Processus Aléatoires

Wiener, The homogeneous chaos, Amer. J. Math., 60 (1938).
Ghanem & Spanos, Stochastic Finite Elements: a Spectral Approach, Springer-Verlag, (1991).
Loève, Probability Theory, Fourth edition, Springer-Verlag, (1977).



• Concept:
Approche probabiliste qui considère que l’incertitude génère de 
nouvelles dimensions et que la solution dépend de ces dimensions.

Représentation de la solution sous forme d’expansion convergente 
construite grâce à une projection sur une base spectrale; les coefficients 
sont calculés par le biais de projections.

• Avantages:
Mesure efficace de la sensibilité de la solution aux paramètres d'entrée 
incertains

Obtention d’une forme explicite de la solution + moments + PDF

• Applications:
Mécanique des structures élastiques stochastiques, écoulement en milieu 
poreux, équations de Navier-Stokes, problèmes thermiques, combustion 
et fluides réactifs, séismologie, micro-fluides et électrochimie.

Modélisation spectrale de l’incertitude



Polynômes de Chaos (Wiener 1938)
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interval, random fields are stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D ⊂ Rd,
d = 2, 3.

In all examples considered here, V is a Hilbert space with dual V ′, norm ‖◦‖ and
inner product (·, ·) : V ×V → R. As V is densely embedded in V ′, we abuse notation
and denote by (·, ·) also the V × V ′ duality pairing.

A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

〈f(ξ)g(ξ)〉 =
∫

ω∈Ω
f(ξ)g(ξ)dP (ω) =

∫
f(ξ)g(ξ)w(ξ)dξ (2.3)

with w(ξ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of the
random vector ξ.

In the discrete case, the above orthogonal relation takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (2.4)

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {Φ} and the law of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that their
weighting function w(ξ) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables ξ. For example,
the weighting function of Hermite orthogonal polynomials is 1√

(2π)n
exp(− 1

2ξT ξ), and
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A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

〈f(ξ)g(ξ)〉 =
∫

ω∈Ω
f(ξ)g(ξ)dP (ω) =

∫
f(ξ)g(ξ)w(ξ)dξ (2.3)

with w(ξ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of the
random vector ξ.

In the discrete case, the above orthogonal relation takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (2.4)

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {Φ} and the law of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that their
weighting function w(ξ) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables ξ. For example,
the weighting function of Hermite orthogonal polynomials is 1√

(2π)n
exp(− 1

2ξT ξ), and

Processus stochastique du second ordre si:
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gence in many cases as we will show.
Classical Wiener-Hermice PC expansions are based on the Hermite polynomial

functionals in terms of Gaussian random variables. In theory, they converge to any L2

functional on the random space [6]. However, in practice they converge slowly for non-
Gaussian random fields and do not apply to random fields with discrete distributions.
Accordingly, for fast convergence in PC expansions and, hence, for computational ef-
ficiency, the “coordinates in probability space” in which PC expansions of the random
solution are sought should be adapted to the statistics of the input data and of the
random solution. This can be done in at least two ways:

(a) By employing generalized PC expansions (gPC expansions) that are orthog-
onal with respect to non-Gaussian probability measures. Such expansions,
referred to as ‘Wiener-Askey’ chaos expansions were first employed in com-
putational algorithms in [70], following developments in probability in [40, 47],
and on orthogonal polynomials in [2, 25].

(b) By optimally separating deterministic and stochastic components of random
input data with prescribed spatial correlation through Karhunen-Loeve (KL)
decomposition [30]. Apart from being a theoretical tool, we show how KL
decompositions can be efficiently computed in general domains D for a wide
class of spatial correlation functions by generalized Fast Multipole Methods
for efficient computational spectral approximation of the covariance operator.

In gPC, the polynomials are chosen from the hypergeometric polynomials of the
Askey family where the underlying random variables are not restricted to Gaussian
random variables. In fact, there exists a unique correspondence between the probabil-
ity distribution function (PDF) of the stochastic input and the weighting function of
the orthogonal polynomials. The convergence properties of different trial bases were
studied in [70] and exponential convergence rate was demonstrated computationally
for model problems. The aforementioned correspondence can be extended to arbi-
trary PDFs with the orthogonal polynomials constructed on-the-fly; this extension
was presented in [60]. In essence, gPC approximations of random fields correspond to
the spectral/hp element method, see [22, 48]. Depending on the stochastic regularity
of the random field, it may by advantageous to combine mesh refinement with increase
of the polynomial degree, leading to an hp-generalization of gPC approximations, see
[59, 27, 4].

The paper is organized as follows: We first review basic concepts and formulation
of gPC approximations of stochastic differential equations in Section 2. We discuss
in some detail the representation of stochastic inputs in general domains and with
prescribed spatial correlation using multipole-based Karhunen-Loeve expansions in
Section 3. In Sections 4 and 5 we present gPC solutions to prototype ordinary and
partial differential equations. The exposition of the gPC-based methods in Sections
2 to 5 is formal. In Section 6 we present the mani ideas on combining perturbation
expansions and sparse grids. Finally, in Section 7 we address some outstanding math-
ematical and computational issues associated with stochastic modeling in general, and
with gPC based methods in particular.

2. Generalized Polynomial Chaos. Stochastic mathematical models are based
on a probability space (Ω,A,P) where Ω is the event space, A ⊂ 2Ω its σ-algebra, and
P its probability measure.

Data and solutions of stochastic differential equations are random fields X(ω), i.e.
mappings X : Ω → V from the probability space into a function space V . If V = R,
we speak of random variables, and if V is a function space over a time and/or space

Soit l’espace probabilisé:

X(ω) = a0Φ0 +
∞∑

i1=1

ai1Φ1(ξi1(ω))

+
∞∑

i1=1

i1∑

i2=1

ai1i2Φ2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3Φ3(ξi1(ω), ξi2(ω), ξi3(ω))

+ · · · ,

peut s’exprimer en fonction de

Theoreme de Cameron & 
Martin (1947): 

PC-homogène converge pour 
toute fonctionnelle de L2

Event space Probability 
measureσ-algebra of Ω



Spectral expansion on orthogonal (in the mean sense 
<Φi ,Φj >=0 if i≠j) Hermite polynomial basis Φk.

ξ is here a “random array” of independent Gaussian 
random variables of the random event ω.

Once computed, the knowledge of the coefficients ak 

fully determines the random process X(ω).

This concept can be generalized to other non-normal 
measures.
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interval, random fields are stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D ⊂ Rd,
d = 2, 3.

In all examples considered here, V is a Hilbert space with dual V ′, norm ‖◦‖ and
inner product (·, ·) : V ×V → R. As V is densely embedded in V ′, we abuse notation
and denote by (·, ·) also the V × V ′ duality pairing.

A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

〈f(ξ)g(ξ)〉 =
∫

ω∈Ω
f(ξ)g(ξ)dP (ω) =

∫
f(ξ)g(ξ)w(ξ)dξ (2.3)

with w(ξ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of the
random vector ξ.

In the discrete case, the above orthogonal relation takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (2.4)

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {Φ} and the law of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that their
weighting function w(ξ) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables ξ. For example,
the weighting function of Hermite orthogonal polynomials is 1√

(2π)n
exp(− 1

2ξT ξ), and

Polynômes de Chaos (continued)



is the set of vectors spanning the process and the 
orthogonal basis Φj is a set of polynomials with degree 
at most equal to P.

The orthogonality relation gives:

< Φi(ξ),Φj(ξ) >=

∫
∞

−∞

Φi(ξ)Φj(ξ)dξ = 0 if i != j

X(x, t, ξ) = X(x, t, ξ1, ξ2, . . . ξN ) ≈
M∑

j=0

Xj(x, t)Φj(ξ)

Polynômes de Chaos (truncated form)
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the form

X(ω) =
M∑

j=0

ajΦj(ξ(ω)), (2.5)

where ξ = (ξ1, · · · , ξN )T is an N−dimensional random vector with ξi independent of
ξj for all 1 ≤ i #= j ≤ N . If we denote the highest order of polynomial {Φ} as P , then
the total number of expansion terms (M + 1) is,

(M + 1) = (N + P )!/(N !P !). (2.6)

The multi-dimensional generalized polynomial chaos expansion is constructed as the
tensor product of the corresponding one-dimensional expansion. Note in one-dimensional
expansions (N = 1), M = P .

Let us now consider a general setting for a differential equation with random
inputs

L(x, t, ω; u) = f(x, t; ω), x ∈ D(Λ), t ∈ (0, T ), ω ∈ Ω, (2.7)

where L is a differential operator, D(Λ) ∈ Rd(d = 1, 2, 3) a bounded domain with
diameter Λ > 0, and T > 0. (Ω,A,P) is an appropriately defined complete probability
space, where A ⊆ 2Ω is the σ-algebra and P the probability measure; u := u(x, t; ω)
is the solution and f(x, t; ω) is the source term. The general procedure of applying
the generalized polynomial chaos consists of the following steps:

1. Express the random inputs by a finite number of random variables ξ(ω) =
{ξ1(ω), ·, ξN (ω)}, and rewrite the stochastic problem parametrically as

L(x, t, ξ; u(x, t; ξ)) = f(x, t; ξ). (2.8)

This step is trivial when the random inputs already take the form of ran-
dom variables. When the random inputs are random fields, a decomposo-
tion technique is needed. One popular choice of such decomposition is the
Karhunen-Loeve expansion, which will be discussed in the following section.

2. Approximate the solution and inputs by finite-term polynomial chaos ex-
pansions (2.5), and substitute the expanded variables into the variational
equation

L
(

x, t, ξ(ω);
M∑

i=0

uiΦi(ξ(ω)

)
= f(x, t; ξ(ω)).

3. Perform a Galerkin projection onto each of the polynomial basis
〈
L

(
x, t, ξ;

M∑

i=0

uiΦi(ξ)

)
, Φk(ξ)

〉
= 〈f, Φk(ξ)〉 , k = 0, 1, · · · , M.

This procedure results in a set of (M +1) deterministic, in general coupled, differential
equations which can be solved by conventional discretization methods. Importantly,
this successive Galerkin discretization “in probability” (by gPC approximation) and
“in physical space” (by finite differences or finite elements) yields generally large sys-
tems of algebraic equations which carry a tensor product block structure. For linear
problems, the structure of the probabilistic part of this system is determined by the
orthogonal polynomials used in the gPC discretization and is, in particular, indepen-
dent of the differential operator under consideration. This observation underlies the
application of gPC type methods described in Sections 4 and 5 ahead. Let us next
turn to the problem of parametric representation of random field input data.

ν = {Φj , j = 0, . . . , M}

6 KARNIADAKIS,SU,XIU,LUCOR, SCHWAB, AND TODOR

interval, random fields are stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D ⊂ Rd,
d = 2, 3.

In all examples considered here, V is a Hilbert space with dual V ′, norm ‖◦‖ and
inner product (·, ·) : V ×V → R. As V is densely embedded in V ′, we abuse notation
and denote by (·, ·) also the V × V ′ duality pairing.

A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

〈f(ξ)g(ξ)〉 =
∫

ω∈Ω
f(ξ)g(ξ)dP (ω) =

∫
f(ξ)g(ξ)w(ξ)dξ (2.3)

with w(ξ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of the
random vector ξ.

In the discrete case, the above orthogonal relation takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (2.4)

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {Φ} and the law of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that their
weighting function w(ξ) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables ξ. For example,
the weighting function of Hermite orthogonal polynomials is 1√

(2π)n
exp(− 1

2ξT ξ), and

with the inner product 
defined as:
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An example of multi-dimensional expansion :

! Polynomial Chaos expansion (Wiener 1938) :
If is a Gaussian vector, the weight function becomes :
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interval, random fields are stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D ⊂ Rd,
d = 2, 3.

In all examples considered here, V is a Hilbert space with dual V ′, norm ‖◦‖ and
inner product (·, ·) : V ×V → R. As V is densely embedded in V ′, we abuse notation
and denote by (·, ·) also the V × V ′ duality pairing.

A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

〈f(ξ)g(ξ)〉 =
∫

ω∈Ω
f(ξ)g(ξ)dP (ω) =

∫
f(ξ)g(ξ)w(ξ)dξ (2.3)

with w(ξ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of the
random vector ξ.

In the discrete case, the above orthogonal relation takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (2.4)

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {Φ} and the law of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that their
weighting function w(ξ) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables ξ. For example,
the weighting function of Hermite orthogonal polynomials is 1√

(2π)n
exp(− 1

2ξT ξ), and

here N =2

Zero & 1st order 
Hermite polynomials

2nd order Hermite 
polynomials

Example of multi-dimensional homogeneous PC expansion
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interval, random fields are stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D ⊂ Rd,
d = 2, 3.

In all examples considered here, V is a Hilbert space with dual V ′, norm ‖◦‖ and
inner product (·, ·) : V ×V → R. As V is densely embedded in V ′, we abuse notation
and denote by (·, ·) also the V × V ′ duality pairing.

A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

〈f(ξ)g(ξ)〉 =
∫

ω∈Ω
f(ξ)g(ξ)dP (ω) =

∫
f(ξ)g(ξ)w(ξ)dξ (2.3)

with w(ξ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of the
random vector ξ.

In the discrete case, the above orthogonal relation takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (2.4)

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {Φ} and the law of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that their
weighting function w(ξ) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables ξ. For example,
the weighting function of Hermite orthogonal polynomials is 1√

(2π)n
exp(− 1

2ξT ξ), and

= {ξ1, ξ2}

w(ξ1, ξ2) =
1

2π
exp−ξ2

1
/2 exp−ξ2

2
/2The weight function is:
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An example of multi-dimensional expansion :

Third order polynomials :
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Hermite-Chaos Expansion of Beta Distribution

Uniform 
distribution :

Exact PDF and PDF of 1st, 3rd, 5th-order Hermite-Chaos Expansions



PDF of exponential distribution and 1st, 3rd and 5th-order Hermite-Chaos

: exponential distribution

Hermite-Chaos Expansion of Gamma Distribution



Exponential Input: Laguerre (optimal) vs. Hermite

Convergence w.r.t. number of expansion terms
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interval, random fields are stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D ⊂ Rd,
d = 2, 3.

In all examples considered here, V is a Hilbert space with dual V ′, norm ‖◦‖ and
inner product (·, ·) : V ×V → R. As V is densely embedded in V ′, we abuse notation
and denote by (·, ·) also the V × V ′ duality pairing.

A random field X : Ω → V is a second-order random field over a Hilbert space V ,
if

E‖X‖2 = E(X, X) < ∞,

where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. The number
of random variables N ∈ N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {ξj}N

j=1 with
N < ∞, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
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and denote by (·, ·) also the V × V ′ duality pairing.
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if
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where E denotes the expectation of a random variable Y ∈ L1(Ω, R) defined by

EY =
∫

ω∈Ω
Y (ω)dP (ω).

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X(ω) parametrically through a set of random variables {ξj(ω)}N

j=1, N ∈
N, through the events ω ∈ Ω:

X(ω) =
∞∑

k=0

akΦk(ξ(ω)). (2.1)

Here {Φj(ξ(ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj(ω)}N
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n’est pas limité à une distribution gaussienne!

Etroite correspondance entre la fonction de 
poids du polynôme choisi et la densité de 

probabilité de l’incertitude

produit interne:



Hypergeometric Orthogonal Polynomials

• Generalized hypergeometric series:

• Pochhammer symbol:

• If one of the ai’s is a negative integer (-n), the series terminate at nth-term
   and become hypergeometric orthogonal polynomials:

• Examples: 0F0 is exponential series; 1F0 is binomial series.

• Infinite series converge under certain conditions:

• Limit relations: e.g. 



Askey-scheme

The Askey scheme of 
Hypergeometric Polynomials



• Orthogonal polynomials

• Three-term recurrence:

• Favard’s inverse theorem

• Orthogonality:

• Weighting functions and PDFs:

 Continuous:

 Discrete:

Hypergeometric Orthogonal Polynomials



Orthogonal Polynomials and Probability Distributions

 Continuous Cases:
• Hermite Polynomials              Gaussian Distribution
• Laguerre Polynomials             Gamma Distribution
                                               (special case: exponential distribution)
• Jacobi Polynomials                 Beta Distribution
• Legendre Polynomials            Uniform Distribution

Gaussian 
distribution

Gamma 
distribution

Beta 
distribution



 Discrete Cases :
• Charlier Polynomials               Poisson Distribution
• Krawtchouk Polynomials        Binomial Distribution
• Hahn Polynomials                   Hypergeometric Distribution
• Meixner Polynomials              Pascal Distribution

Poisson 
distribution

Binomial distribution Hypergeometric distribution

Orthogonal Polynomials and Probability Distributions
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the form

X(ω) =
M∑

j=0

ajΦj(ξ(ω)), (2.5)

where ξ = (ξ1, · · · , ξN )T is an N−dimensional random vector with ξi independent of
ξj for all 1 ≤ i #= j ≤ N . If we denote the highest order of polynomial {Φ} as P , then
the total number of expansion terms (M + 1) is,

(M + 1) = (N + P )!/(N !P !). (2.6)

The multi-dimensional generalized polynomial chaos expansion is constructed as the
tensor product of the corresponding one-dimensional expansion. Note in one-dimensional
expansions (N = 1), M = P .

Let us now consider a general setting for a differential equation with random
inputs

L(x, t, ω; u) = f(x, t; ω), x ∈ D(Λ), t ∈ (0, T ), ω ∈ Ω, (2.7)

where L is a differential operator, D(Λ) ∈ Rd(d = 1, 2, 3) a bounded domain with
diameter Λ > 0, and T > 0. (Ω,A,P) is an appropriately defined complete probability
space, where A ⊆ 2Ω is the σ-algebra and P the probability measure; u := u(x, t; ω)
is the solution and f(x, t; ω) is the source term. The general procedure of applying
the generalized polynomial chaos consists of the following steps:

1. Express the random inputs by a finite number of random variables ξ(ω) =
{ξ1(ω), ·, ξN (ω)}, and rewrite the stochastic problem parametrically as

L(x, t, ξ; u(x, t; ξ)) = f(x, t; ξ). (2.8)

This step is trivial when the random inputs already take the form of ran-
dom variables. When the random inputs are random fields, a decomposo-
tion technique is needed. One popular choice of such decomposition is the
Karhunen-Loeve expansion, which will be discussed in the following section.

2. Approximate the solution and inputs by finite-term polynomial chaos ex-
pansions (2.5), and substitute the expanded variables into the variational
equation

L
(

x, t, ξ(ω);
M∑

i=0

uiΦi(ξ(ω)

)
= f(x, t; ξ(ω)).

3. Perform a Galerkin projection onto each of the polynomial basis
〈
L

(
x, t, ξ;

M∑

i=0

uiΦi(ξ)

)
, Φk(ξ)

〉
= 〈f, Φk(ξ)〉 , k = 0, 1, · · · , M.

This procedure results in a set of (M +1) deterministic, in general coupled, differential
equations which can be solved by conventional discretization methods. Importantly,
this successive Galerkin discretization “in probability” (by gPC approximation) and
“in physical space” (by finite differences or finite elements) yields generally large sys-
tems of algebraic equations which carry a tensor product block structure. For linear
problems, the structure of the probabilistic part of this system is determined by the
orthogonal polynomials used in the gPC discretization and is, in particular, indepen-
dent of the differential operator under consideration. This observation underlies the
application of gPC type methods described in Sections 4 and 5 ahead. Let us next
turn to the problem of parametric representation of random field input data.
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Φ0(ξ) = 1.0

Φ1(ξ) = ξ1

Φ2(ξ) = ξ2

Φ3(ξ) = ξ2
1 − 1

Φ4(ξ) = ξ2
2 − 2

Φ5(ξ) = ξ1ξ2

Exemple:

‣     : distribution gaussienne

‣     : Polynômes d’Hermite

‣ N=2; P=2
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“in physical space” (by finite differences or finite elements) yields generally large sys-
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problems, the structure of the probabilistic part of this system is determined by the
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n’est pas limité à une distribution gaussienne!

X(ω) =< X(ω) >= a0

var(X(ω)) =<
(

X(ω) − X(ω)
)2

>=
P

∑

j=1

a
2

j < Φ2

j >

Moyenne:

Variance:

X(x, t, ξ) = X(x, t, ξ1, ξ2, . . . ξN ) ≈
M∑

j=0

Xj(x, t)Φj(ξ)



Technique d’utilisation du PC pour la résolution 
d’équation différentielle stochastique

Approche INTRUSIVE (method of weighted residuals)
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1/ Discrétiser le processus aléatoire à l’aide de variables 
aléatoires (indépendantes).  
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turn to the problem of parametric representation of random field input data.

2/ Ecrire la solution et les paramètres d’entrée incertains sous forme de 
sommes finies de PC et substituer dans l’équation.  

3/ Projeter (type Galerkin) sur la base des polynômes orthogonaux 
considérés. Obtention d’un système linéaire.

- les modes PC sont couplés de façon implicite
- nécessite l’adaptation du solver déterministe



- revient au calcul de nombreuses quadratures numériques
- risque d’aliasing
- simplicité d’utilisation ne nécessite pas l’adaptation du solver déterministe (boite noire)

Technique d’utilisation du PC pour la résolution 
d’équation différentielle stochastique

Approche NON-INTRUSIVE (collocation method)
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the form

X(ω) =
M∑

j=0

ajΦj(ξ(ω)), (2.5)

where ξ = (ξ1, · · · , ξN )T is an N−dimensional random vector with ξi independent of
ξj for all 1 ≤ i #= j ≤ N . If we denote the highest order of polynomial {Φ} as P , then
the total number of expansion terms (M + 1) is,

(M + 1) = (N + P )!/(N !P !). (2.6)

The multi-dimensional generalized polynomial chaos expansion is constructed as the
tensor product of the corresponding one-dimensional expansion. Note in one-dimensional
expansions (N = 1), M = P .

Let us now consider a general setting for a differential equation with random
inputs

L(x, t, ω; u) = f(x, t; ω), x ∈ D(Λ), t ∈ (0, T ), ω ∈ Ω, (2.7)

where L is a differential operator, D(Λ) ∈ Rd(d = 1, 2, 3) a bounded domain with
diameter Λ > 0, and T > 0. (Ω,A,P) is an appropriately defined complete probability
space, where A ⊆ 2Ω is the σ-algebra and P the probability measure; u := u(x, t; ω)
is the solution and f(x, t; ω) is the source term. The general procedure of applying
the generalized polynomial chaos consists of the following steps:

1. Express the random inputs by a finite number of random variables ξ(ω) =
{ξ1(ω), ·, ξN (ω)}, and rewrite the stochastic problem parametrically as

L(x, t, ξ; u(x, t; ξ)) = f(x, t; ξ). (2.8)

This step is trivial when the random inputs already take the form of ran-
dom variables. When the random inputs are random fields, a decomposo-
tion technique is needed. One popular choice of such decomposition is the
Karhunen-Loeve expansion, which will be discussed in the following section.

2. Approximate the solution and inputs by finite-term polynomial chaos ex-
pansions (2.5), and substitute the expanded variables into the variational
equation

L
(

x, t, ξ(ω);
M∑

i=0

uiΦi(ξ(ω)

)
= f(x, t; ξ(ω)).

3. Perform a Galerkin projection onto each of the polynomial basis
〈
L

(
x, t, ξ;

M∑

i=0

uiΦi(ξ)

)
, Φk(ξ)

〉
= 〈f, Φk(ξ)〉 , k = 0, 1, · · · , M.

This procedure results in a set of (M +1) deterministic, in general coupled, differential
equations which can be solved by conventional discretization methods. Importantly,
this successive Galerkin discretization “in probability” (by gPC approximation) and
“in physical space” (by finite differences or finite elements) yields generally large sys-
tems of algebraic equations which carry a tensor product block structure. For linear
problems, the structure of the probabilistic part of this system is determined by the
orthogonal polynomials used in the gPC discretization and is, in particular, indepen-
dent of the differential operator under consideration. This observation underlies the
application of gPC type methods described in Sections 4 and 5 ahead. Let us next
turn to the problem of parametric representation of random field input data.
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1/ Discrétiser le processus aléatoire à l’aide de variables 
aléatoires (indépendantes).  
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2/ Obtenir les coefficients PC en projetant la solution sur la base polynomiale.  

rapport aux mesures de probabilités non-gaussiennes. De tels polynômes sont aussi appelés PC
Wiener-Askey.

Dans l’approche PCg, les polynômes sont choisis de telle manière qu’il existe une étroite cor-
respondance entre la fonction densité de probabilité (FDP) de la variable aléatoire considérée et
la fonction de poids du polynôme orthogonal. C’est pourquoi il existe un polynôme optimal pour
chaque type de distribution (cf. Tableau (1)).

En essence, la représentation PCg de champs incertains correspond à une représentation par
éléments spectraux de la fonction aléatoire dans l’espace probabiliste. Le Tableau (1) présente la
correspondance qui existe entre le type de distribution et le polynôme de chaos optimal. Chaque
famille de polynômes permettra la représentation la plus compacte et la plus précise de la fonction
aléatoire pourvue du type de distribution approprié.

Table 1: Correspondance entre le type de polynôme Wiener-Askey et la densité de probabilité
associée (N ≥ 0 est un entier fini).

Variables aléatoires ξ Wiener-Askey PC {Φ(ξ)} Support

Distribution Gaussian Hermite-chaos (−∞,∞)
continue gamma Laguerre-chaos [0,∞)

beta Jacobi-chaos [a, b]
uniform Legendre-chaos [a, b]

Distribution Poisson Charlier-chaos {0, 1, 2, . . . }
discrète binomial Krawtchouk-chaos {0, 1, . . . , N}

negative binomial Meixner-chaos {0, 1, 2, . . . }
hypergeometric Hahn-chaos {0, 1, . . . , N}

Il existe une approche, dite intrusive de l’application des PC. Elle consiste à substituer la
représentation PC dans l’EDP stochastique considérée, à projeter (projection de type Galerkin)
ce nouveau système sur la base des PC puis à résoudre le système couplé déterministe qui résulte
de cette projection. Cette approche ne sera pas décrite en détail dans ce rapport. De plus, cette
approche est coûteuse en terme de développement du code de calcul déterministe de base qui doit
subir de lourdes modifications.

Une autre approche, dite non-intrusive consiste à projeter directement la solution stochastique
sur l’ensemble des polynômes de la base PC. De cette manière, les coefficients Jk peuvent être
calculés directement grâce à une projection de type Galerkin de la solution sur la base PC. C’est
la méthode que nous utiliserons dans cette étude. L’orthogonalité de la base rend cette projection
aisée et nous avons:

(∀k ∈ {0, . . . , P}) Jk =
< J(ω) Φk(ξ(ω)) >

< Φ2
k(ξ(ω)) >

. (5)

Nous rappelons que < Φk(ξ(ω)) >= 0 pour k > 0. Le mode-zéro du PC, J0, représente
la solution moyenne J̄ et les autres modes d’ordre plus élevés sont une mesure de la variabilité
stochastique de la solution autour de sa valeur moyenne. En particulier la variance de la solution
s’ecrit:
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Example: 1st order linear ODE

GENERALIZED POLYNOMIAL CHAOS FOR DIFFERENTIAL EQUATIONS 13

4. Ordinary Differential Equations. In this section, we illustrate the solu-
tion procedure of gPC for a simple ordinary differential equation, and present error
convergence both through numerical examples and theoretical estimates. The model
ODE we consider takes the following form

dy

dt
(t, ω) = −k(ω)y, y(0) = ŷ, t ∈ (0, T ), (4.1)

where the decay rate coefficient k(ω) is a random variable with certain continuous
distribution function f(k) and zero mean value. The solution takes a simple form of

y(t, ω) = ŷe−k(ω)t. (4.2)

We apply the gPC expansion (2.5) to the solution y and random input k

y(t, ω) =
M∑

i=0

yi(t)Φi(ξ(ω)), k(ω) =
M∑

i=0

kiΦi(ξ(ω)). (4.3)

Note here the only random input is k(ω) and a one-dimensional gPC is needed, i.e.,
N = 1 in (2.6) and M = P , where P is the highest order of expansion. By substituting
the expansions into the governing equation, we obtain

M∑

i=0

dyi(t)
dt

Φi = −
M∑

i=0

M∑

j=0

ΦiΦjkiyj(t). (4.4)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis.
By utilizing the orthogonality condition (2.2), we obtain:

dyl(t)
dt

= − 1
〈Φ2

l 〉

M∑

i=0

M∑

j=0

eijlkiyj(t), l = 0, 1, . . . , M, (4.5)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any standard
ODE solver can be employed here.

In Figure 4.1, the computational results of Jacobi-chaos expansion is shown, where
the random input k(ω) is assumed to have a beta distribution with PDF of the form

f(k; α, β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1, β + 1)
, −1 < k < 1, α, β > −1, (4.6)

where B(α, β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). An
important special case is α = β = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and variance on the right
of Figure 4.1, with different sets of parameter values α and β. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as εP = 〈(y(t) −
yP (t))2〉/〈y2(t)〉, where yP (t) is the finite-term expansion (4.3). The following results
have been obtained in [34]:
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Fig. 4.1. Solution with beta random input by 4th-order Jacobi-Chaos; Left: Solution of each
mode (α = β = 0: Legendre-Chaos), Right: Error convergence of the mean and the variance with
different α and β.

• If k(ω) is a Gaussian random variable with zero mean and standard deviation
σ > 0 and Hermite-chaos is used, then

εP ≤ (σt)2(P+1)

e(σt)2 − 1

[
(P + 1)!

(
1 − (σt)2

P + 1

)]−1

. (4.7)

• If k(ω) is an exponential random variable with zero mean and standard devi-
ation σ > 0 and Laguerre-chaos is used, then

εP =
(

σt

1 + σt

)2P

. (4.8)

• If k(ω) is a uniform random variable and Legendre-chaos is used, no explicit
formula for the error is available. However, the error can be readily evaluated
via the three-term recurrence formula of the Legendre polynomials.

In Figure 4.2 we plot the number of expansion terms (P + 1) that is needed to
ensure that the error reaches a prescribed value. In particular, we fix the value at
ε = 10−7. It can be seen that as time increases, the number of term required grows,
and the rate of such growth is different for the three cases; the Legendre-chaos has
the slowest growth rate and the Hermite-chaos the fastest. Note that the time axis
is scaled with the variance σ for each process. More numerical examples for the
first-order ODEs can be found in [70] and the detailed error analysis in [34].

5. Partial Differential Equations. In this section, we present applications
of generalized polynomial chaos to some prototype partial differential equations. In
particular, we consider some cases for which analytical results can be derived so that
such cases can be used for verification studies.

5.1. Linear advection equation. First, we consider the linear advection equa-
tion with uncertain transport velocity field, i.e.,

∂u

∂t
(t, x, ω) + V (t, x, ω)

∂u

∂x
= 0 (t, x, ω) ∈ [0, T ]× [−1, 1]× Ω, (5.1)

with initial condition u(0, x) = sin πx, and periodic boundary conditions. We assume
that the transport velocity V (t, x, ω) is a given random process with mean value
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4. Ordinary Differential Equations. In this section, we illustrate the solu-
tion procedure of gPC for a simple ordinary differential equation, and present error
convergence both through numerical examples and theoretical estimates. The model
ODE we consider takes the following form

dy

dt
(t, ω) = −k(ω)y, y(0) = ŷ, t ∈ (0, T ), (4.1)

where the decay rate coefficient k(ω) is a random variable with certain continuous
distribution function f(k) and zero mean value. The solution takes a simple form of

y(t, ω) = ŷe−k(ω)t. (4.2)

We apply the gPC expansion (2.5) to the solution y and random input k

y(t, ω) =
M∑

i=0

yi(t)Φi(ξ(ω)), k(ω) =
M∑

i=0

kiΦi(ξ(ω)). (4.3)

Note here the only random input is k(ω) and a one-dimensional gPC is needed, i.e.,
N = 1 in (2.6) and M = P , where P is the highest order of expansion. By substituting
the expansions into the governing equation, we obtain

M∑

i=0

dyi(t)
dt

Φi = −
M∑

i=0

M∑

j=0

ΦiΦjkiyj(t). (4.4)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis.
By utilizing the orthogonality condition (2.2), we obtain:

dyl(t)
dt

= − 1
〈Φ2

l 〉

M∑

i=0

M∑

j=0

eijlkiyj(t), l = 0, 1, . . . , M, (4.5)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any standard
ODE solver can be employed here.

In Figure 4.1, the computational results of Jacobi-chaos expansion is shown, where
the random input k(ω) is assumed to have a beta distribution with PDF of the form

f(k; α, β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1, β + 1)
, −1 < k < 1, α, β > −1, (4.6)

where B(α, β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). An
important special case is α = β = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and variance on the right
of Figure 4.1, with different sets of parameter values α and β. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as εP = 〈(y(t) −
yP (t))2〉/〈y2(t)〉, where yP (t) is the finite-term expansion (4.3). The following results
have been obtained in [34]:
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k = k̄ + σkξ2

dyl

dt
= −

1

< Φ2
l >

M∑

i=0

M∑

j=0

< ΦiΦjΦl > kiyj for l = 0, 1, . . . , MGalerkin projection:



Avantages des méthodes gPC

Méthode efficace qui fournit une estimation quantitative de la 
sensibilité de la solution aux incertitudes des parametres d’entrée 

Convergence spectrale et représentation optimale (compacité et 
précision) de l’incertitude grâce à un choix de polynômes 
appropriés. Possibilité de représentation non-intrusive par 
projection de la solution sur la base du chaos polynomial.

Non limitée aux distributions gaussiennes d’incertitude ou à des 
incertitudes faibles.

Tous les moments + pdf de la solution sont disponibles.

Coût de calcul en général très inférieur aux méthodes de type 
Monte-Carlo (distribution gaussienne: 1 à 2 ordres de grandeur, 
distribution uniforme: 3 à 4 ordres de grandeur).
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y(t, ω) = ŷe−k(ω)t. (4.2)

We apply the gPC expansion (2.5) to the solution y and random input k

y(t, ω) =
M∑

i=0

yi(t)Φi(ξ(ω)), k(ω) =
M∑

i=0

kiΦi(ξ(ω)). (4.3)

Note here the only random input is k(ω) and a one-dimensional gPC is needed, i.e.,
N = 1 in (2.6) and M = P , where P is the highest order of expansion. By substituting
the expansions into the governing equation, we obtain

M∑

i=0

dyi(t)
dt

Φi = −
M∑

i=0

M∑

j=0

ΦiΦjkiyj(t). (4.4)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis.
By utilizing the orthogonality condition (2.2), we obtain:

dyl(t)
dt

= − 1
〈Φ2

l 〉

M∑

i=0

M∑

j=0

eijlkiyj(t), l = 0, 1, . . . , M, (4.5)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any standard
ODE solver can be employed here.

In Figure 4.1, the computational results of Jacobi-chaos expansion is shown, where
the random input k(ω) is assumed to have a beta distribution with PDF of the form

f(k; α, β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1, β + 1)
, −1 < k < 1, α, β > −1, (4.6)

where B(α, β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). An
important special case is α = β = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and variance on the right
of Figure 4.1, with different sets of parameter values α and β. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as εP = 〈(y(t) −
yP (t))2〉/〈y2(t)〉, where yP (t) is the finite-term expansion (4.3). The following results
have been obtained in [34]:

GENERALIZED POLYNOMIAL CHAOS FOR DIFFERENTIAL EQUATIONS 13

4. Ordinary Differential Equations. In this section, we illustrate the solu-
tion procedure of gPC for a simple ordinary differential equation, and present error
convergence both through numerical examples and theoretical estimates. The model
ODE we consider takes the following form

dy

dt
(t, ω) = −k(ω)y, y(0) = ŷ, t ∈ (0, T ), (4.1)
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Fig. 4.1. Solution with beta random input by 4th-order Jacobi-Chaos; Left: Solution of each
mode (α = β = 0: Legendre-Chaos), Right: Error convergence of the mean and the variance with
different α and β.

• If k(ω) is a Gaussian random variable with zero mean and standard deviation
σ > 0 and Hermite-chaos is used, then

εP ≤ (σt)2(P+1)

e(σt)2 − 1

[
(P + 1)!

(
1 − (σt)2

P + 1

)]−1

. (4.7)

• If k(ω) is an exponential random variable with zero mean and standard devi-
ation σ > 0 and Laguerre-chaos is used, then

εP =
(

σt

1 + σt

)2P

. (4.8)

• If k(ω) is a uniform random variable and Legendre-chaos is used, no explicit
formula for the error is available. However, the error can be readily evaluated
via the three-term recurrence formula of the Legendre polynomials.

In Figure 4.2 we plot the number of expansion terms (P + 1) that is needed to
ensure that the error reaches a prescribed value. In particular, we fix the value at
ε = 10−7. It can be seen that as time increases, the number of term required grows,
and the rate of such growth is different for the three cases; the Legendre-chaos has
the slowest growth rate and the Hermite-chaos the fastest. Note that the time axis
is scaled with the variance σ for each process. More numerical examples for the
first-order ODEs can be found in [70] and the detailed error analysis in [34].

5. Partial Differential Equations. In this section, we present applications
of generalized polynomial chaos to some prototype partial differential equations. In
particular, we consider some cases for which analytical results can be derived so that
such cases can be used for verification studies.

5.1. Linear advection equation. First, we consider the linear advection equa-
tion with uncertain transport velocity field, i.e.,
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important special case is α = β = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and variance on the right
of Figure 4.1, with different sets of parameter values α and β. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as εP = 〈(y(t) −
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y(t, ω) = ŷe−k(ω)t. (4.2)

We apply the gPC expansion (2.5) to the solution y and random input k

y(t, ω) =
M∑

i=0

yi(t)Φi(ξ(ω)), k(ω) =
M∑

i=0

kiΦi(ξ(ω)). (4.3)

Note here the only random input is k(ω) and a one-dimensional gPC is needed, i.e.,
N = 1 in (2.6) and M = P , where P is the highest order of expansion. By substituting
the expansions into the governing equation, we obtain

M∑

i=0

dyi(t)
dt

Φi = −
M∑

i=0

M∑

j=0

ΦiΦjkiyj(t). (4.4)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis.
By utilizing the orthogonality condition (2.2), we obtain:

dyl(t)
dt

= − 1
〈Φ2

l 〉

M∑

i=0

M∑

j=0

eijlkiyj(t), l = 0, 1, . . . , M, (4.5)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any standard
ODE solver can be employed here.

In Figure 4.1, the computational results of Jacobi-chaos expansion is shown, where
the random input k(ω) is assumed to have a beta distribution with PDF of the form

f(k; α, β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1, β + 1)
, −1 < k < 1, α, β > −1, (4.6)

where B(α, β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). An
important special case is α = β = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and variance on the right
of Figure 4.1, with different sets of parameter values α and β. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as εP = 〈(y(t) −
yP (t))2〉/〈y2(t)〉, where yP (t) is the finite-term expansion (4.3). The following results
have been obtained in [34]:

k = k̄ + σkξ2

Difficulty of the method



k is a random variable with zero mean 
and constant variance and a certain 
probability distribution f(k) : 
Uniform distribution (Legendre)

Mean solution: Variance solution:

Effect of GPC variable order P on the 
convergence rate in time



Difficulty of the method
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Fig. 4.2. Number of expansion terms needed to reach a prescibed error level of εP = 10−7. The
three curves are Hermite-chaos, Laguerre-chaos, and Legendre-chaos, corresponding to k(ω) being
Gaussian, expoential, and uniform random variables, respectively.

V̄ (x) = 1 and finite variance σ2 > 0. If the transport velocity V ≡ V (t, ω) in (5.1) is
not a function of space, the initial value problem can be solved exactly by the method
of characteristics (see [20]). The mean solution is given by

ū(x, t) = sin π(x + 1 − V̄ t)e−(πτσ)2/2, (5.2)

where τ characterizes the correlation struction of V (t, ω) in time

τ2 =






t2, fully correlated,
(∆t)t, uncorrelated,
2γ[t − γ(1 − e−t/γ)], partially correlated,

(5.3)

where γ is the correlation length and ∆t denotes the sampling interval.
The variance of the solution u(x, t), when V (t, ω) is a Gaussian random field, is:

Var(u(x, t)) =
1
2
(1 − e−(πστ)2)[1 + cos 2π(x + 1 − V̄ t)e−(πστ)2 ]. (5.4)

Detailed computational results for linear advection equations can be found in [20]; for
advection-diffusion equations, see [62]. We note here that the numerical solution of
the gPC equations is rather trivial using standard discretization methods. However,
following a Monte Carlo approach special care is required in handling the spatial
discretization in the case that V (x, t, ω) is a stochastic process depending on the
spatial or temporal coordinate.

5.2. Elliptic equation. Next, we consider diffusion problems with random dif-
fusivity κ(x, ω) which are prototype equations for subsurface flow problems and heat
conduction:

{
−∇ · [κ(x, ω)∇u(x, ω)] = f(x, ω), (x, ω) ∈ D × Ω
u(x, ω) = g(x, ω), (x, ω) ∈ ∂D × Ω (5.5)

Here D is a bounded domain in Rd (d = 1, 2, 3) and Ω is a probability space, and f ,
g and κ are R-values functions on D × Ω. This also can be considered as a model
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• If k(ω) is a Gaussian random variable with zero mean and standard deviation
σ > 0 and Hermite-chaos is used, then

εP ≤ (σt)2(P+1)

e(σt)2 − 1

[
(P + 1)!

(
1 − (σt)2

P + 1

)]−1

. (4.7)

• If k(ω) is an exponential random variable with zero mean and standard devi-
ation σ > 0 and Laguerre-chaos is used, then

εP =
(

σt

1 + σt

)2P

. (4.8)

• If k(ω) is a uniform random variable and Legendre-chaos is used, no explicit
formula for the error is available. However, the error can be readily evaluated
via the three-term recurrence formula of the Legendre polynomials.

In Figure 4.2 we plot the number of expansion terms (P + 1) that is needed to
ensure that the error reaches a prescribed value. In particular, we fix the value at
ε = 10−7. It can be seen that as time increases, the number of term required grows,
and the rate of such growth is different for the three cases; the Legendre-chaos has
the slowest growth rate and the Hermite-chaos the fastest. Note that the time axis
is scaled with the variance σ for each process. More numerical examples for the
first-order ODEs can be found in [70] and the detailed error analysis in [34].

5. Partial Differential Equations. In this section, we present applications
of generalized polynomial chaos to some prototype partial differential equations. In
particular, we consider some cases for which analytical results can be derived so that
such cases can be used for verification studies.

5.1. Linear advection equation. First, we consider the linear advection equa-
tion with uncertain transport velocity field, i.e.,

∂u

∂t
(t, x, ω) + V (t, x, ω)

∂u

∂x
= 0 (t, x, ω) ∈ [0, T ]× [−1, 1]× Ω, (5.1)

with initial condition u(0, x) = sin πx, and periodic boundary conditions. We assume
that the transport velocity V (t, x, ω) is a given random process with mean value
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4. Ordinary Differential Equations. In this section, we illustrate the solu-
tion procedure of gPC for a simple ordinary differential equation, and present error
convergence both through numerical examples and theoretical estimates. The model
ODE we consider takes the following form

dy

dt
(t, ω) = −k(ω)y, y(0) = ŷ, t ∈ (0, T ), (4.1)

where the decay rate coefficient k(ω) is a random variable with certain continuous
distribution function f(k) and zero mean value. The solution takes a simple form of

y(t, ω) = ŷe−k(ω)t. (4.2)

We apply the gPC expansion (2.5) to the solution y and random input k

y(t, ω) =
M∑

i=0

yi(t)Φi(ξ(ω)), k(ω) =
M∑

i=0

kiΦi(ξ(ω)). (4.3)

Note here the only random input is k(ω) and a one-dimensional gPC is needed, i.e.,
N = 1 in (2.6) and M = P , where P is the highest order of expansion. By substituting
the expansions into the governing equation, we obtain

M∑

i=0

dyi(t)
dt

Φi = −
M∑

i=0

M∑

j=0

ΦiΦjkiyj(t). (4.4)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis.
By utilizing the orthogonality condition (2.2), we obtain:

dyl(t)
dt

= − 1
〈Φ2

l 〉

M∑

i=0

M∑

j=0

eijlkiyj(t), l = 0, 1, . . . , M, (4.5)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any standard
ODE solver can be employed here.

In Figure 4.1, the computational results of Jacobi-chaos expansion is shown, where
the random input k(ω) is assumed to have a beta distribution with PDF of the form

f(k; α, β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1, β + 1)
, −1 < k < 1, α, β > −1, (4.6)

where B(α, β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). An
important special case is α = β = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and variance on the right
of Figure 4.1, with different sets of parameter values α and β. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as εP = 〈(y(t) −
yP (t))2〉/〈y2(t)〉, where yP (t) is the finite-term expansion (4.3). The following results
have been obtained in [34]:
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Spectral estimation of non-linear terms when no closed-forms are 
available 

• use pseudo-spectral approximation. 

Low convergence for non-Gaussian process: 

• use the appropriate measure with Generalized PC. 

Convergence failure for discontinuous or non-smooth processes 
(stochastic bifurcation) 

• develop adapted (non-smooth or local) bases: multi-wavelets or 
multi-elements gPC.

CPU cost for large scale problems

• design new solvers, use different types of (sparse) numerical 
quadratures, sparse tensor products.

Challenge: development of bases and techniques to improve 
convergence and robustness of spectral expansions for processes 
with steep/discontinuous dependences to uncertain parameters or 
processes depending on a large number of random variables. 

Problems and possible remedies...



Possible applications so far...

Solid mechanics (Ghanem & Spanos 1989-91). 

Flow through porous media (Ghanem & Dham 1998, Zhang & Lu 
2004). 

Heat diffusion in stochastic media (Hien & Kleiber 1997-98, Xiu & 
Karniadakis 2003).

Incompressible flows (Le Maître et al, Karniadakis et al, Hou et al). 

Fluid-Structure interaction (Karniadakis et al). 

Micro-fluid systems (Debusschere et al 2001). 

Reacting flows & combustion (Reagan et al 2001). 

0-Mach flows & thermo-fluid problems (Le Maître et al 2003). 


