Lagrangians Methods for CFD in plasma physics

Bruno Després
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1. Context : numerical methods for ICF
2. the Eulerian case as Lagrange+remapp (today)
3. The real 2D Lagrangian case (tomorrow)

4. Conclusion



| present the result of years of investigation at the CEA with many
students and collaborators. | focus on Lagrangian schemes for historical

reasons. | he presentation is split in two parts.

Part I: 1D Lagrange models and eulerian schemas as Lagrange+remapp

schemes
Outline

a) A general framework for many models

b) Application to 1D lagrangian gas dynamics, T;-T. model ideal MHD
(plasma physics with shocks).

c) High order extension: DGM /Reconstruction. Aeroacoustic.

d) Conclusion and perspectives
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T+l After remapp j-1 j j*+1 j+2

t
141 Before remapp

At

Figure 1: Consider that we use a directional splitting (ADI). In each
direction: First we solve in the comobile frame that moves with the fluid :
the mesh moves. Then we remapp, that is we project on the old mesh.
Remapping is conceptually easy. Even if high order is mandatory to get

good results. Let focus on the Lagrange step
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Otp + Oz pu =0,
O pu + Oy (pu? + =0, p=nplep),
1D Euler Ot t Oxlpu”+p) p=ple, p)
Ope + Op(peu+pu) =0, e=1iu?+e,
\ 0¢pS + Qc(pSu) > 0.

Let define = z(m,t): % = u(z,t), x(X,0) = X. The mass variable

is p(X,0)dX =dm, X = X(m).

The Lagrangian equations are

( (

T — Omu = 0, T(m,t) = p~Y(x(m,1),1),
; Ot + Omp = 0, < u(m,t) = u(x(m,t),t),

o¢e + Ompu = 0, e(m,t) =e(x(m,t),t),
RZEE S(m,t) = S(x(m,t),1).

\

This is the good system to work on for the Lagrangian step.
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Let O.U + 0,, f(U)=0,U € R" and f(U) € R". We assume that there
exists a strictly concave physical entropy S € R with a vanishing entropy
flux: ;S =0 V smooth U.

Main Theoretical result: All systems of conservation laws with
vanishing entropy flux coming from the mechanics ("fluid models",
Galilean invariance, reversibility for smooth solutions) have the form

MU
— iUt MU

where M = M%isan —1 x n— 1 constant symmetric matrix,

V=VysS= V= (“;1 52 ...V@‘l), U, = e is the total energy and
Vo=

L
UM = (U, MU) € R.
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Example

Euler equations in Lagrange coordinates

T —Uu

e U

corresponds to dS = +(de + pdr) = +(de — udu + pdr). So

p={ " |, M=
—1U I 0
0 My .
In the general case M = where M is rectangular.

M 0
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For such a system one has V =Vy S =V, (¥,1). So

v MWV
8tS — Vn &E 1ot
1 — 1 Wt M

=V, (¥, M8,, V) — (¥, M, T)) = 0.

The entropy is constant along integral lines. This is true for many

systems (MHD, ionized gas, Lorentzian gas dynamics, ...).

This is the type of systems | want to study
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Consequence for numerical schemes

Consider the explicit scheme
A (Ut~ UP) 4 f(U);4 1 — F(U);_y =0 with

MV
foy=1{
VA

We introduce the splitting of M in a symmetric positive part and a

symmetric negative part: M = MT + M~, M+ = (M™)* > 0 and

M~ =(M")<0.

Many non expensive splittings are available. The explicit flux is
M:'_% \Ijz’—l—l + M,;'_% \Iji

_%(\pyﬂ,M;%\piH) — (¥, Mijr%\I!i)
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The flux is consistent. If U;* = U, then f(U); 1 is equal to
FO)ipy = fWUF) = fF(UL).

Numerical stability from basic physical principles The scheme is entropy
consistent under CFL condition, i.e. there exists constants c' > 0 such

that
At

if ¢ 5 <1, then SUMh > S(UM)
For gas dynamics S = log(e77~!). The inequality is a non linear
stability result for the Lagrange step of the scheme. Since the remapp is
stable, the Lagrange+remapp scheme is stable and very robust for a

large variety of models.
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A simple proof. Consider the semi-discrete scheme
AmLU; + f(U )igr — f(U);—1 = 0. Compute (V,, = +)

d

TATR%Sz' == ((‘I’z, 1), f(U)ir1 — f(U)i—%)

— (W, M i) + (05, M, W)
2 2

1 1 _
—5(\D¢+1,M,:L%\If¢+1) - E(Wi,MH%\Pi)) + ()

DO | —

1
- ((@ M W) (Wi M W)

+(U5, M, 1 W) —
2

DO |

=(20)=(=0)=(=0) -

10

1
(Wi, M, ¥;) Q\Pz,M \11) ( \Ilz,M\IJ))
> 0.
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1 Physical examples: gas dynamics, T;-1,. plasma, MHD, 2D AMR
MHD.

2 High order extension: DGM versus reconstruction plus limiting

3 Very high on cartesian grids finite volume scheme for the
acoustic approximation: collaboration with Pascal Havé, Stéphane Del

Pino and Hervé Jourdren.



The simplest example :

Choose a coefficient o,

1 1 1 1
200, 1 2 _ 200. | 1 2
MT, = it+3 and M~ , = i*+3
it+3 1 Yitl i+3 1 _ %td
2 2 2 2
The difference equations are
n—+1 ( ¥ \
A 7‘@, — Tzn ’sz_i_% + u _%
m
- n+l ' n * X —
At U, u; + p’i—i—% pz—% 0
n—+1 n * *
€ € \ (pU)H; - (P’U)Z_; )
2 2
where
( (P ™), 1
* 1 n n i+ n n
; Pipr = s + i) + ——=(uf —uiyy)
* 1 n n 1 n n
.
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1D gas dynamics
— (p*c*)H% > 0. We split M into

12
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This is the acoustic approximation. It may be recovered through a
standard analysis of the linearized Riemann invariants Richtmyer-Morton
(1957), Godounov (1959), ..... HLLE, ... These linearized Riemann
invariants are dp + (pc)du = 0 where (pc) is the product of the density
0

c
times the velocity of sound (pc)? = — 515 We freeze (pc) = (p"c*); 1.

The solution of the linearized Riemann problem between a left state
7', u, ei and a right state 7%, u}' 1, e | gives an intermediate state
referred as p*, u™. The equation for these p*, u* is

p* + ()i yut = pi + (7 g uf
P — (P*C*)H%U* = p?+1 - (p*c*)i—l—%u?—l—l

whose solution is exactly the acoustic flux.
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14

However many other splittings are available, some of them being exotic.
One may choose to split M into (a1 = (p*c*); 11 > 0)

1

1 1 _ 1
Q. _ Q.
Mt = i+3 and M~ |, = i+3
2 1 2 0
it ]

We end up to other formulas for the fluxes

*

Piy1 = Piy1 T+ (P*C*>z’+% (ui" — ug'yy)
1

*)Z+%

*

n
Uipy = Wik T G

(P} — p'?+1)
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Figure 2: p, u, —S for the Sod shock tube at time t = 0.14 in pure
Lagrange. Acoustic (top) versus exotic (bottom). Entropic schemes are
stable. They converge to the correct solution. The difference is more a
matter of accuracy.
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Application to 7; — 7. model

In view of solving ICF oriented problems we introduce the
non-conservative T; — T, model for ionized gas, in Euler coordinates

/

Op + 0z (pu) =0

s pu + Oy (pu? + p; +pe) =0

Orpei + O (puei) + pidou = ——(T. — Ti)

Orpee + Oz (puce) + pedou = =(Ti = T) + 0, K0, T,

\

The density of total energy e = ¢; + ¢, + %uz satisfies
Orpe + 0. (pue + piu + peu) = 0, K0, T.

The correct equation for electrons is
1

1
(T = To) + 0 Ko0: T

67-62 (&

0 pSe + OppuSe =
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So the system we want to solve is

2

Oip + Ox(pu) =0

Ospu + Oy (pu? + p; +pe) =0

O¢pe + Oz (pue + piu 4 peu) = 0, K0, T

0rpSe + OppuSe = 7 (Ti — Te) + 70, K0, T,

TeTes

\

First we solve the hydrodynamic part

/

Op+ 0x(pu) =0 O:7 — Opyu = 0

¢ pu + Oy (pu? + p; +pe) =0 e Oyt + O (pi + pe) = 0
o pe + 0. (pue + piu + peu) =0 05, =0

0 pSe + Oz puSe = 0 | Ore + Om (piu + peu) = 0
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The structure of the lagrangian flux is given by

D =Di + De 0O 0 1
Y = —T. , B = 0O 0 O
—U 1 0 O

ion)?'

We get an entropy consistent scheme such that (S;y,)7 > (S
Finally after remapping+ solving the right hand side we get a stable,
conservative and globally entropy consistent scheme for the T; — T,

model and for a very large set of equations of state p., p; and
coefficients 7.;, K..

18
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Ti,Te: comparaison

9e+06 T T T T T T T T
'fort.82" -----
‘euler/src/T.5n" -----
8e+06 - ‘euler/src/T.5n’ -
7e+06 |- ; -
6e+06 | S -
c ! !
£
Q
v |
5e+06 | i
4e+06 |- .
3e+06 - ,//""// i
26+06 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

cm

Figure 3: T; — T, model. Comparison with the VNR scheme. The piston
on the right models the laser that pushes the target. The shock is corrrect
because the entropy of the scheme is on the ions
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Be carefull that

( (

Op + Oz (pu) =0 Op + Oz (pu) = 0
. O pu + Oy (pu? +p; +pe) =0 — Ospu + Oy (pu? + p; +pe) =0
Orpe + Oz (pue + piu + peu) = 0 Orpe + Oz (pue + piu + peu) = 0
_ 0tpSe + OzpuSe =0 | 0tpSi + OxpuS; =0

for smoth solutions. But for non smooth solutions (shocks) this is no
more equivalent.
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The ideal multi-D MHD (strong coupling between a plasma and the
electro-magnetic field) system written in conservative form is

[0\ [ Vlow )

B V. (u® B— B®u)
(pu@u—#)—i—VP

\E ) \ V.(E+Pu-ZwB) |

New difficulty : the conservative formulation of MHD is not hyperbolic
(in the general mathematical sense). However it is linearly well posed
is one do not forget about the fre divergence constraint on the magnetic
field. Simple calculations show that V.B = 0 is preserved by the system.

The equation for entropy is

(B.u)

V.B= 0.
ppL

0,(pS) + V.(puS) > —
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1D lagrange for MHD is hyperbolic and conservative. We obtain

(7 [~ )
7B, —B., v
B, — B, w

O | u +0m | P* =0

v —%By
w —%Bz

\ e ) \ P*u — %(vBy +whB,) )

with
P* =p+ %(—Bi + B, + BY)

The physical entropy S(e, 7) gives the mathematical entropy —S.

22
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Page 001 Page 002

<<<<<<<<<<<

Figure 4: Shock tube. If B + B} + B2 # 0 then the scheme (with F.
Bézard, JCP, 1998) is not equal to the Roe scheme.
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The Landau-Godunov-Roe-Powell formulation is hyperbolic

( P \ ( V.(pu) \ ( 0 \
ol B 4| VweB-Bou I T
pu V.(pu@u— 2E2) + VP B
\E ) \ V.((E+Pyu—2uB) ) ey

But is not conservative. Our goal was to derive a stable, conservative,

entropic scheme.



Part | b)

We use another formulation

[0\ [ Vo) \
B V.ipu® B —C ® u)

V.(pu @ u — C®B)—|—VP
\ £/ \V(E—l—Pu——(uB)) )

where C' is an exterior field such that V.C' = 0. In practice one solves

with an ad-hoc method that guarantees V.C' = 0.
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Let U* = ( P, —%, —u ) The new abstract multiD quasi-lagrangian
formulation is (D; = 0y + u.V)

MW
pD U0, f(U)+0,9(U)+0.h(U) = 0 where f(U) 1w, M)
( o 0 0 O 1 0 0 \
O 0 0 0 C; 0 0
0O 0 0 0 0 C; 0
and M, = 0 O 0 0 0 0o C; , 1=1,2,3.
1 ¢; 0 0 0 0 O
o 0 C; 0 0 0 0
\ 0o 0 0 C; 0 0 © )

On has M; = M} and
0, M7 + GyMg + 0, M3 = 0.
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We use the lagrange+remapp scheme for e and a direct integration of C'.

. . i+1/2,]
i-1/2,j

Figure 5: Degrees of freedom. C'is discretized with 0:C; 4+ 9,9 = 0 and
0:Cy — 0,q = 0 where ¢ is given at the nodes.

Main result (with F. Desveaux, tech. rep. CMLA) : Assume
O —Cﬁ’lj%—Ci’”‘. O = 0.

Z—i_%aj 7'_5 Z7]+% - Z7]+%

Then S{} > S{; under CFL.
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Pressure for the Collela-Malagoni test case

28
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Pressure for the Collela-Malagoni test case : zoom

29
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Pressure for the Collela-Malagoni test case : zoom-zoom

30
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How about high order extension 7 It is possible to preserve the discrete

entropy inequality in the Lagrange step 7
Two approaches : DGM and reconstruction a la Van Leer.

It is possible to preserve the entropy inequality for DGM (B.D. VII
conference on hyperbolic problems, Zurich, 1998). But the CPU cost of

the method makes it non competitive with respect to reconstruction.
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Example of DGM for Euler equations in the axisymmetric case

0 (y*p) + 0 (y*pu) + 0y (y pv) = 0,

0 (y*pu) + 9 (y* pu? + y*p) + 9y (y* puv) = 0,

0 (y* pv) + 0 (y puv) + 0y (y*pv* + y*p) = dy*'p,
0y (y?pe) + 0. (y pue + y*pu) + 9, (y* pve + y*pv) = 0.

\

d=0: 2D classical.

d=1: the axisymmetric 2.5D case. Here the equation on v is non
conservative. For simplicity, the domain is a square
(x,y) € Q2 =]0,1[x]0,1[, and the pressure provided by a ~y-law
p=(y—1)(pe — p=52).

32
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The Kidder problem It is very strong isentropic convergent flow. The
analytical solution is self-similar for v = 2. The solution at (r,t) is
related to the solution at (R,t = 0) through the transformation

r=R\/1— % this transformation is defined for ¢ smaller than the
focusing time 0 <t < 7. The initial conditions are

( —1r’—R? R3—r?
plr,0) = (P2~ e + 01 ) : o)
'U/(’ry O) — 07 IO(T’ t) - h(t)g’
_ u(r,t) = @,
< 8(T7 0) :IO<T? O>fy 17 and then < ( ) dt .
_ y—
p(r.0) = (v = Dp(r,0)", S = e T
_ _p(R)
1 R2—R? X p(ra t) h(t)37
= o (),
\ 27 \pg " —p]
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Figure 6: Isolines of the density for the Kidder problem. The best result

if with 4 points (@1 discontinuous). But the CPU cost is bad
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An example of high order reconstruction a la Van Leer (ADER

like), collaboration with S. Delpino, H. Jourdren and Pascal Havé
(Post-doc at the CEA)

Figure 7: A complete different problem: aeroacoustic in the atmosphere.

Maximal pressure in atmosphere
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Principle: The acoustic system is the linearized Lagrange system.

Propagation in the air on distances greater than 100 wavelengths

Otp + pcz(aa:u + 8yv> =0, pdu+ dpp =0, pdy + Oyp = 0.

= A
5000m Données :
/source a 10Hz c(y) = 343.23 + 0.1y

p = po=1.205
(B zone d’'écoute

w00 v

ps(t) = sin(207t)

5 /
M Y p(t=0) =0
U(t=0) = V(t=0) = 0

Ogy Condition limite type Neumann




| M

-60 | n ‘
m
i !l
Atténuation (dB) de la pressi
(15pts/A, 4M mailles 6CP
The red curve if clos he refer
solution). The atten for lo




The CPU cost of the high order schemes : COST = anpem + b1 fiops
with agam = 0.1us, b = 0.0003us
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the ratio is > 300!/

Schémas # flops/maille | us/maille | Mflops-s™—1
Lax-Wendroff 17 1336 0.427 2690
Lax-Wendroff 9 432 0.259 1880
Lax-Wendroff 2 56 0.104 870
Lax-Wendroff 1 40 0.080 900
GAD 116 0.128 1100
Ordre 2 200 0.101 2100
Ordre 3 950 0.342 2400
Godunov (UpWind) 46 0.065 1100

Here high order costs not too much !!

For a 1D linear advection the ration of flops is ~ £22% ~ 200.

38
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Conclusion and pespectives
Lagrange+remapp schemes can be analyzed with entropic schemes.
These entropic schemes (S increases) are stable.

A general theorem states that almost all hyperbolic models of continuum
mechanics can be incorporated with this approach.

| know about no direct eulerian code compatible with such an approach.

Current work
e axisymmetric MHD
e very high order methods.

e All these studies are AMR oriented.



