Vortex dynamics and Compressibility effects in Large-Eddy Simulations (2 of 2)

P. Comte

IMFS, Strasbourg mailto: comte@imfs.u-strasbg.fr

Outline:

- Talk 1
 - ▶ Mixing layers (al., J. Silvestrini et al., Eur. J. Mech. B, 17, 1998)
 - ▶ LES in Fourier space
 - ▶ LES in physical space
 - ▹ SGS model assessment
 - ▷ Compressible LES formulations
 - ▷ Air-intake flow (unpublished)

CEMBACS Marseille June 22, 2005 – p. 2/65

Outline (cont'd):

• Talk 2

- spatial discretization
- ▶ High-order conservation schemes
- ▶ MILES ENO assessment
- ▶ example of shock-wave/boundary layer interaction
- ▷ Cavity flows (Y. Dubief)
- Cavity flows (L. Larchevêque *et al.*, *Phys. Fluids*, *Phys. Fluids*, **15**, 2003, *J. Fluid Mech.*, **516**, 2004)
- Supersonic compression ramp flows (unpublished)
- Solid-propellent rocket flow (unpublished)
- Separation control by tangential blowing (preliminary)
- ▷ Supersonic channel flow (C. Brun *et al.*, ETC5, Toulouse, 2003)
- ▶ MHD mixing layers and jets (H. Baty *et al.*, *Phys. Plasmas*, **10**, 2003)

Acknowledgements

H. Baty

Á

CEMBACS Marseille June 22, 2005 - p. 1/65

- E. Briand
- C. Brun
- E. David
- M. Haberkorn
- P. Kessler
- L. Larchevêque
- E. Schwander
- J.H. Silvestrini
- LEGI Grenoble, M. Lesieur, O. Métais
- ONERA Chatillon
- Observatoire de Strasbourg

Spatial discretization (1/2)

 modified wavenumber (Vichnevetsky and Bowles, SIAM, 1982, Lele, J. Comp. Phys., 1992): $k_{mod_a} \in \mathbb{C}$:

 $\frac{df}{dr}(k_q) = ik_{mod_q}\hat{f}(k_q); \quad k_q = \frac{2\pi}{N\Lambda r}q$

▶ non-dissipative scheme (*i.e.* purely dispersive) $\iff k_{mod_a} \in \mathbb{R} \quad \forall q \in [-N/2, N/2 - 1]]$

FD, order 2 & 4 compact schemes (1)

Á

À

M

Spatial discretization (3/3)

• $\cos'(x)$, 128 points, 8, 16, 32 and 64 periods \longrightarrow integer number of points per period: 16 8 2nd order, 6th order compact

Spatial discretization (2/2)

 Compact schemes (for 1st derivatives) centered schemes

$\alpha f'_{j-1} + f'_j + \alpha f'_{j+1} = a \frac{f_{j+1} - f_{j-1}}{2\Delta x} + b \frac{f_{j+2} - f_{j-2}}{4\Delta x} + \cdots$

4th order
$$\longrightarrow a = \frac{2}{3}(\alpha + 2)$$
 and $b = \frac{1}{3}(4\alpha - 1)$
 \diamond explicit: $\alpha = 0 \longrightarrow a = 4/3$ $b = -1/3$
 \diamond Pade, Mehrenstellen: $b = 0$
 $\longrightarrow \alpha = 1/4 \longrightarrow a = 3/2$
 $\diamond \alpha = 1/3$ $a = 14/9$ $b = 1/9 \longrightarrow$ 6th order
de-centered schemes:
 $2f'_{N-1} + f'_N = \frac{f_{N-2} - 4f_{N-1} - 5f_N}{2\Delta x}$ and
 $f'_1 + 2f'_2 = \frac{-5f_1 + 4f_2 + f_3}{2\Delta x}$: 3rd order

CEMRACS, Marseille, June 22, 2005 - p. 6/65

Spatial discretization (4/4)

• $\cos'(x)$, 128 points, 12, 24, and 48 periods \longrightarrow non-integer number of

2nd order, 6th order compact.

CEMBACS, Marseille, June 22, 2005 - p. 5/65

High-order conservation schemes (1/9)

• since Lax & Wendroff (1960):

$$x_{j} = j\Delta x, \qquad \frac{\partial u}{\partial t} + \underbrace{\frac{\partial f(u)}{\partial x}}_{F_{j+\frac{1}{2}} - F_{j-\frac{1}{2}}} = s(u) \qquad (2a)$$

$$\bar{F}_{j+\frac{1}{2}} = \mathcal{F}(u_{j-q+1}, \dots, u_j, u_{j+1}, \dots, u_{j+q})$$
 (2)

$$\mathcal{F}(u,\ldots,u,u,\ldots,u) = f(u)$$
 (2c)

consistent with weak form, hence with the jump relation across shocks (Rankine-Hugoniot).

High-order conservation schemes (3/9)

from now on, assume $g(x_j \pm \frac{\Delta x}{2}) = F_{j \pm \frac{1}{2}}$.

• with the 2nd order centered scheme:

$$F_{j\pm\frac{1}{2}} = [f(u_{j\pm1}) + f(u_j)]/2$$

one has

$$\frac{\partial g}{\partial x} = \frac{g(x + \frac{\Delta x}{2}) - g(x - \frac{\Delta x}{2})}{\Delta x} + \mathcal{O}(\Delta x^2)$$

• order q > 2 obtained by discrete deconvolution of the box filter

High-order conservation schemes (2/9)

• note: for any g piecewise integrable,

$$\frac{g(x + \frac{\Delta x}{2}) - g(x - \frac{\Delta x}{2})}{\Delta x} \equiv \frac{\partial}{\partial x} \underbrace{\left(\frac{1}{\Delta x} \int_{x - \frac{\Delta x}{2}}^{x + \frac{\Delta x}{2}} g(\xi) d\xi\right)}_{\bar{g}(x_{4})} . \tag{3}$$

▶ at each grid point: conservative derivation \equiv derivation \circ box-filtering

CEMRACS, Marseille, June 22, 2005 - p. 10/65

High-order conservation schemes (4/9)

• A_q : approximate inverse of box filter

$$\frac{\partial g}{\partial x} = \frac{A_q g(x + \frac{\Delta x}{2}) - A_q g(x - \frac{\Delta x}{2})}{\Delta x} + \mathcal{O}(\Delta x^q) , \qquad (4)$$

filter symmetric →

Á

A T

$$A_q = 1 + \sum_{p=1}^{p=m} (-1)^p a_{2p} (\Delta x)^{2p} \frac{\partial^{2p}}{\partial x^{2p}} + O(\Delta x)^{2(m+1)} , \qquad (5)$$

m = E(q/2): integer part of q, i.e.

$$q=2m$$
 or $q=2m+1$

• check: $a_2 = 1/24$ $a_4 = 7/5760$.

CEMRACS, Marseille, June 22, 2005 - p. 9/65

High-order conservation schemes (5/9)

- polynomial A_q can be discretized over several r-point stencils with different degrees of upwinding and stability: $S_k = (x_{j+k-r+1}, x_{j+k-r+2}, \cdots, x_{j+k}), k = 0, \cdots, r-1.$
- r^{th} -order-accurate reconstruction $\hat{F}_{j+\frac{1}{2}}$ of the fluxes at interface $j+\frac{1}{2}$:

$$\begin{aligned} +\frac{1}{2} &= A_r(G(x + \Delta x/2)) \\ &= \sum_{l=0}^{r-1} \alpha_{k,l}^r f(u_{j-r+1+k+l}) \end{aligned}$$
(6)

• α_{kl}^r : reconstruction coefficients

Ê

CEMRACS, Marseille, June 22, 2005 – p. 13/65

Á

High-order conservation schemes (7/9)

r	k	I=0	l=1	l=2	I=3	I=4
4	0	-1/4	13/12	-23/12	25/12	
	1	1/12	-5/12	13/12	1/4	
	2	-1/12	7/12	7/12	-1/12	
	3	1/4	13/12	-5/12	1/12	
	4	25/12	-23/12	13/12	-1/4	
5	0	1/5	-21/20	137/60	-163/60	137/60
	1	-1/20	17/60	-43/60	77/60	1/5
	2	1/30	-13/60	47/60	9/20	-1/20
	3	-1/20	9/20	47/60	-13/60	1/30
	4	1/5	77/60	-43/60	17/60	-1/20
	5	137/60	-163/60	137/60	-21/20	1/5

Reconstruction coefficients $\alpha_{k,l}^r$

High-order conservation schemes (6/9)

r	k	l=0	l=1	l=2
2	0	-1/2	3/2	
	1	1/2	1/2	
	2	3/2	-1/2	
3	0	1/3	-7/6	11/6
	1	-1/6	5/6	1/3
	2	1/3	5/6	-1/6
	3	11/6	-7/6	1/3

Reconstruction coefficients $\alpha_{k,l}^r$

High-order conservation schemes (8/9)

• check: r = 4, k = 2: (6) \longrightarrow

$$\begin{split} F_{j+\frac{1}{2}} &= -\frac{1}{12}f_{j-1} + \frac{7}{12}f_j + \frac{7}{12}f_{j+1} - \frac{1}{12}f_{j+2} \\ F_{j-\frac{1}{2}} &= -\frac{1}{12}f_{j-2} + \frac{7}{12}f_{j-1} + \frac{7}{12}f_j - \frac{1}{12}f_{j+1} \\ \\ \frac{F_{j+\frac{1}{2}} - F_{j-\frac{1}{2}}}{\Delta x} &= \frac{-\frac{1}{12}f_{j-2} - \frac{8}{12}f_{j-1} + \frac{8}{12}f_{j+1} - \frac{1}{12}f_{j+2}}{\Delta x} \\ f'_j &= -\frac{1}{3}\frac{f_{j+1} - f_{j-1}}{2\Delta x} + \frac{4}{3}\frac{f_{j+2} - f_{j-2}}{4\Delta x} \\ \alpha &= 0 \quad b = -\frac{1}{3} \quad a = \frac{4}{3} \end{split}$$

→ 4th-order centered

M

65

AT I

High-order conservation schemes (9/9)

r	k	I=0	l=1	I=2	I=3	I=4	I=5	I=6
6	0	-1/6	31/30	-163/60	79/20	-71/20	49/20	
	1	1/30	-13/60	37/60	-21/20	29/20	1/6	
	2	-1/60	7/60	-23/60	19/20	11/30	-1/30	
	3	1/60	-2/15	37/60	37/60	-2/15	1/60	
	4	-1/30	11/30	19/20	-23/60	7/60	-1/60	
	5	1/6	29/20	-21/20	37/60	-13/60	1/30	
	6	49/20	-71/20	79/20	-163/20	31/30	-1/6	
7	0	1/7	-43/42	667/210	-2341/420	853/140	-617/140	363/140
	1	-1/42	37/210	-241/420	153/140	-197/140	233/140	1/7
	2	1/105	-31/420	109/420	-241/420	153/140	13/42	-1/42
	3	-1/140	5/84	-101/420	319/420	107/210	-19/210	1/105
	4	1/105	-19/210	107/210	319/420	-101/420	5/84	-1/140
	5	-1/42	13/42	153/140	-241/420	109/420	-31/420	1/105
	6	1/7	223/140	-197/140	153/140	-241/420	37/210	-1/42
	7	363/140	-617/140	853/140	-2341/420	667/210	-43/42	1/7
\sim								

Á

Å

Á

MILES-ENO (1 of 4)

MILES-ENO (3/4)

Vincent and Meneguzzi 1991 ($Rel \approx 150$) \bigcirc CEMRACS, Marseille, June 22, 2005 - p. 20/65

3D high-subsonic cavity flow:

 $(M = 0.9, Re_H = 1.25 \ 10^6, L/H = 4)$ (Y. Dubief), ~ Tracy & Plentovich (NASA Tech. Paper 3669, 1997.)

• Rossiter (R.A.E Tech. Rep. 64037, 1964)

$$f_m = \frac{U_\infty}{L} \frac{(m-\gamma)}{\left(\frac{1}{K} + M_\infty\right)}$$

with
$$\gamma = 0.25$$
 and $K = 0.57$ for $L/H = 4$.

Shock Wave / Boundary Layer Interaction (1 of 1)

streamwise velocity, $M_{\infty} = 2.4$ (Garnier *et al.*, AIAA J., 2002): 4th-order centered conservative / skew-symmetric FV with local ENO filtering (with Ducros sensor)

CEMRACS, Marseille, June 22, 2005 - p. 22/65

(7)

Á

3D high-subsonic cavity flow:

- side view
- perspective
- upstream-looking view

Cavity flow (1/10):

Á with e.g. $\gamma = 0.25$ and K = 0.57 for L/H = 4.

CEMRACS, Marseille, June 22, 2005 - p. 26/65

(8)

Cavity flow (2/10):

Cavités étudiées

L/D=0,41 Forestier <i>et al.</i> (2002) (ONERA / DAFE)	L/D=2 Forestier <i>et al.</i> (2000) (ONERA / DAFE)	L/D=5 Henshaw (2000) (Quinetiq)		
□ M=0,8	□ M=0,8	□ M=0,85		
$\square \ \mathrm{Re}_{\mathrm{L}} = 6, 5.10^5$	$\square Re_L = 6, 5.10^5$	\square Re _L = 7,2.10 ⁶		
$\Box 1, 8.10^6$ mailles	$\square {f 6}, 1.10^6$ mailles	$\square 3, 5.10^6$ mailles		
🛛 données expérimentales :	données expérimentales :	🛛 données expérimentales :		
strioscopies,pression,vitesses.	strioscopies,pression,vitesses.	• pression		

CEMRACS, Marseille, June 22, 2005 - p. 25/65

CEMRACS, Marseille, June 22, 2005 - p. 27/65

Cavity flow (3/10):

Movies: **1: Schlieren section 2:** Q > 0 **3: Phase average**

Cavity flow (4/10):

CEMRACS, Marseille, June 22, 2005 - p. 29/65

Cavity flow (6/10):

Cavity flow (5/10):

Cavity flow (7/10):

Á

Cavity flow (8/10):

CEMRACS, Marseille, June 22, 2005 - p. 33/65

Á

. M

Cavity flow (10/10):

Cavity flow (9/10):

Compression ramps (1/4)

Á

A

Compression ramps (2/4)

Á

CEMRACS, Marseille, June 22, 2005 - p. 37/65

Á

Á

Compression ramps (4/4)

Thermo Sensitive Paint (above) heat flux (right) (Schneider et al., AIAA 2003)

Compression ramps (3/4)

CEMRACS, Marseille, June 22, 2005 - p. 38/65

vortex shedding in solid rockets (1 of 4)

entropy (low Re)

vortex shedding in solid rockets (3 of 4)

CEMRACS, Marseille, June 22, 2005 - p. 42/65

Separation control (preliminary results)

vortex shedding in solid rockets (2 of 4)

vortex shedding in solid rockets (4 of 4)

Á

Supersonic channel flow

• wall friction :
$$\tau_w = \mu \left. \frac{\partial \tilde{u}}{\partial y} \right|_w = \rho_w u_s^2$$

• wall heat flux :
$$q_w = -\lambda \left. \frac{\partial \tilde{T}}{\partial y} \right|_w = -\rho_w C_p u_\tau T_\tau$$

$$ightarrow Re_{ au} = rac{
ho_w u_{ au} h}{\mu_w}, \quad M_{ au} = rac{u_{ au}}{\sqrt{\gamma RT_w}}, \quad B_q = -rac{T}{T}$$

DNS references

- G. Coleman, J. Kim and R.D. Moser J. Fluid Mech., 1995
- 2. R. Lechner, J. Sesterhenn and R. Friedrich JoT, 2001
- 3. H. Foysi, S. Sarkar and R. Friedrich J. Fluid Mech., 2004

Simulation parameters

case	M	Re	Re_{τ}	M_{τ}	-Bq	legend
Coleman <i>et al.</i> 1995	1.5	3000	222	0.082	0.049	
	3	4880	451	0.116	0.137	
Foysi <i>et al.</i> 2004	0.3	2820	181	•		<u> </u>
	1.5	3000	221	•	•	
	3	6000	556	•	•	
	3.5	11310	1030	•		——
LES	0.3	3000	188	0.018	0.0022	+
	1	"	201	0.057	0.029	0
	1	4880	315	0.055	0.022	×
	1.5	3000	220	0.08	0.05	\triangleleft
	2	"	245	0.09	0.08	*
	3	4880	469	0.114	0.137	
	5	4880	693	0.138	0.28	∇

CEMRACS, Marseille, June 22, 2005 - p. 45/65

Á

Á

CEMRACS, Marseille, June 22, 2005 - p. 46/65

Mean & RMS streamwise velocity

(--Mach = 0 (Kim))

		Crocco
Mach	T_c/T_w	model
0 (Kim)	1	1
1.5 (Coleman)	1.38	1.42
1.5 LES	1.40	1.42
3 (Coleman)	2.49	2.68
3 LES	2.63	2.68
5 LES	5.7	6.1

compressible Poiseuille flow 'Crocco-Busemann (1931-1932) type' relation: $\frac{T - T_w}{T_w} = (\gamma - 1) Pr M^2 \left(\frac{u}{u_b} - 1/3 \frac{u^2}{u_b^2}\right)$

Á

CEMRACS, Marseille, June 22, 2005 - p. 48/65

compressibility and viscosity effects

Near-wall scaling in fully developed channel flow

Momentum equation

 $\rho_w \ u_\tau^2 = \mu \frac{\partial \overline{U}}{\partial y}$

 $d\overline{U}^+ = \frac{\mu_w}{u}$

Total Energy equation

$$\tau_w \approx \mu \frac{\partial \overline{U}}{\partial y} - \rho \ \overline{u'v'} \qquad -q_w \approx \left(\lambda \frac{\partial \overline{T}}{\partial y} - \rho \ \overline{\theta'v'}\right) + \left(\frac{1}{2}\mu \frac{\partial \overline{U}^2}{\partial y} - \rho \ \overline{u'^2v'}\right)$$

viscous sublaver

$$\rho_w \ c_p \ u_\tau \ T_\tau = \ \lambda \frac{\partial \overline{T_i}}{\partial y} = \lambda \frac{\partial}{\partial y} \left(\overline{T} + \frac{P}{2} \right)$$
(Michel Quemard & Durand ONERA

(Michel, Quemard & Durand ONERA N.T. 1969) (Debiève, Dupont , Smith & Smits AIAA J. 1997)

$$dy^+ \qquad \qquad d\overline{T_i}^+ = Pr \; \frac{\mu_w}{\mu} \; dt$$

(Carvin, Debiève & Smits AIAA J. 1988)

 $\overline{U}^{+} = \int_{0}^{y^{+}} \frac{\mu_{w}}{\mu} \, dy^{+} = y^{c+} \qquad \overline{T_{i}}^{+} = \overline{T}^{+} + \frac{\gamma - 1}{2} Pr \, M_{\tau}^{c^{2}} \, \overline{U}^{+}^{2} = Pr \, y^{c+}$

Coherent structures

Q criterion : $Q = \frac{1}{2} \left(\tilde{\omega}_{ij} \tilde{\omega}_{ij} - \tilde{S}_{ij} \tilde{S}_{ij} \right)$

CEMRACS, Marseille, June 22, 2005 - p. 50/65

Different wall units

À

Á

- standard wall units : $y^+ = \frac{\rho_w y u_\tau}{u_w}$
- semi-local definitions :
 - $\triangleright y_{brad} = \frac{\rho y u_{\tau}}{\mu}$ (Bradshaw Ann. Review 1977)
 - ▷ $y^* = \rho_{\sqrt{\frac{\tau_w}{\rho}}} \frac{y}{\mu}$ (Huang,Coleman,Bradshaw J. Fluid Mech. 1995)

• modified wall units :
$$y^{c+} = \int_0^{y^+} \frac{\mu_w}{\mu} dy^+$$

 \overline{U}^{2}

modified flow parameters

Case	Re_b	Re_{τ}	R_{ν}	$Re_{ au}^{c}$	$\frac{M_{ au}}{B_q^2}$
Kim <i>et al.</i> (1987)					
Mach=0	2800	180	180	180	
Coleman et al. (1995)					
Mach=1.5	3000	222	151	≈ 180	0.37
Coleman et al. (1995)					
Mach=3	4880	451	151	≈ 200	0.31
Present Study					
Mach=0.3	3000	188	185	186	0.39
Mach=1		200	165	180	0.38
Mach=1.5		220	146	176	0.36
Mach=2		245	128	172	0.35
Mach=1	4880	315	165	282	0.37
Mach=3		468	93	245	0.3
Mach=5		693	$\overline{75}$	219	0.26

- $U^+ = f(y^+, M_\tau, B_q, (Pr_t, \kappa, n))$ ($\kappa = C_p/C_v$ and $\mu = T^n$) (Rotta 1960)
- 'The appropriate Reynolds number for scaling at given M_e is $R_{brad} = \sqrt{\frac{\rho_w}{\rho_e}} \frac{u_\tau \, \delta}{\nu_e}$ ' (Bradshaw Ann. Rev. Fluid Mech. 1977)

Log-scaling in fully developed channel flow

$$\begin{split} \text{Momentum equation} & \text{Total Energy equation} \\ & \tau_w \approx -\rho \ \overline{u'v'} & -q_w \approx -\rho \ \overline{\theta'v'} - \rho \ \overline{u'^2v'} \\ \text{log region} & \rho_w \ u_\tau^2 = \mu_t \frac{\partial \overline{U}}{\partial y} & \rho_w \ c_p \ u_\tau \ T_\tau = \ \lambda_t \frac{\partial \overline{T_t}}{\partial y} = \lambda_t \frac{\partial}{\partial y} \left(\overline{T} + \frac{Pr_t}{2 \ c_p} \overline{U}^2\right) \\ & \text{mixing length} \\ \text{theory} & d\overline{U}^+ = \sqrt{\frac{\rho_w}{\rho}} \frac{1}{\kappa \ y^+} dy^+ & d\overline{T_t}^+ = \sqrt{\frac{\rho_w}{\rho}} \frac{Pr_t}{\kappa \ y^+} dy^+ \\ & \text{van Driest} \\ \text{transform} & \overline{U}_{VD}^+ = \int_0^{\overline{U}^+} \sqrt{\frac{\rho}{\rho_w}} \ d\overline{U}^+ & \overline{T_t}_{CDS}^+ = \int_0^{\overline{T_t}^+} \frac{1}{\rho_{r_t}} \sqrt{\frac{\rho}{\rho_w}} \ d\overline{U}^+ & = \frac{1}{\kappa} \ \ln y^+ + C_3 \\ & \text{(Van Driest 1955)} & \text{(Carvin, Debiève & Smits AIAA 1988)} \\ & \text{Alternative} \\ & \overline{U}_{ransform}^{c+} = \int_0^{\overline{U}^+} \frac{y^+}{y^c_+} \ \frac{\mu_w}{\mu_-} \sqrt{\frac{\rho}{\rho_w}} \ d\overline{U}^+ & \overline{T_t}_i^{c+} = \left[\overline{T}^+ + \frac{\gamma-1}{2} \ Pr_t \ M_\tau^{c^2} \ \overline{U}^+^2\right]_{e} \\ & = \frac{1}{\kappa} \ \ln y^{c+} + C_U^c & = \frac{Pr_t}{\kappa} \ \ln y^{c+} + C_{T_t}^c \\ & = \frac{Pr_t}{\kappa} \ \ln y^{c+} + C_{T_t}^c \end{bmatrix} \\ \end{array}$$

Spanwise correlations : streaks mean-spacing

Á

Á

CEMBACS, Marseille, June 22, 2005 - p. 53/65

$\lambda_z^+ \simeq 2y^+(R_{uu_{min}})$					
Mach	λ_z^+	$\lambda_{z_c}^+$			
$0~({ m Kim})$	100	100			
0.3	120	130			
1	140	130			
$1.5~{ m (Coleman)}$	150	≈ 122			
1.5	160	140			
2	190	140			
3 (Coleman)	300	≈ 133			

'The Mach number invariance of the integral lengthscale is our most conclusive check on Morkovin's hypothesis at present' (Bradshaw Ann. Rev. Fluid Mech. 1977)

CEMRACS, Marseille, June 22, 2005 - p. 54/65

law of the wall for the mean velocity

CEMRACS, Marseille, June 22, 2005 - p. 56/65

A

law of the wall for the mean total temperature

van Driest Transformation density correction logarithmic zones :

density & viscosity correction

$\overline{T_{iCDS}}^{+} = \frac{1}{5} ln \ y^{+} + C_3$

(Michel et al. 1969) : $C_3 \approx 3.6$

(Debiève et al. 1997) : $C_3 \approx 3$

CEMBACS, Marseille, June 22, 2005 - p. 57/65

MHD jets:

MHD jets:

I. Motivation : observations

*Examples of observed jets from young stellar object (YSO) and active galactic nuclei (AGN) : remarkable stability over long distances with respect to the radial extents (~ a few 100 Rj)

These well collimated flows terminate in a strong shock with the external medium (the sonic Mach number is Ms >> 1)

How such supersonic jets survive instabilities ?

LA Gom image (c) NRAO 1996 2005 - p. 58/65 CEMBACS Margaille June 2

MHD jets:

Ħ

005 - p. 60/65

MHD mixing layers:

MHD mixing layers:

CEMRACS, Marseille, June 22, 2005 - p. 62/65

Summary:

Á

Á

• Mixing layers

- ▶ receptivity to unexpected forcings (helical pairings)
- ▶ ribs' pairings (despite isotropy assumptions in SGS models)
- Cavity flows
 - ▶ complexity of the acoustic feedback
 - ▷ reflections of acoustic waves → vortex shedding
 - ▶ mean-flow bifurcations
 - mode switching
 - ▷ influence of aspect ratios (L/D, L/W)
- Görtler vortices in external and internal flows
- Supersonic channel flow
 - ▶ possible (non-local) integral scale ?
 - ▶ yet another SRA for non-adiabatic walls
- MHD shear flows: interplay between CD and KH instabilities

MHD jets:

- R/m = 10 ("top hat" initial profile)
 - ▶ without magnetic field
 - ▶ with magnetic field (disruptive regime)
- R/m = 2 (~ jet de Bickley)
 - ▶ without magnetic field
 - ▶ with magnetic field (disruptive regime)

CEMRACS, Marseille, June 22, 2005 - p. 61/65

Announcements:

- Books:
 - LESIEUR, M., MÉTAIS & COMTE, P. 2005 Large-Eddy Simulation of Turbulence, *Cambridge University Press*, available in August.
 - SMITS, A.J. & DUSSAUGE, J.-P. 2005 *Turbulent shear layers in supersonic flow*. AIP Press, 2e edition.
- Summer School:
 - Turbulence and Mixing in Compressible Flows ERCOFTAC SIG 4, AFM & CNRS Strasbourg, July 7-11, 2005 http://cfd.u-strasbg.fr/SIG4/
- Conference and workshop
 - Turbulence and Interactions Porquerolles, May 29 - June 2, 2006 http://www.onera.fr/congres/ti2006/

CEMRACS, Marseille, June 22, 2005 - p. 65/65