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CELL-TO-MUSCLE HOMOGENIZATION. APPLICATION TO A CONSTITUTIVE
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Abstract. We derive a constitutive law for the myocardium from the description of both the geo-
metrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set
of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments.
We work in a large displacement framework and we use a discrete homogenization technique. The
macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system
of the discrete lattice reference cell.

Résumé. Partant de la description de l'arrangement géométrique des cardiomyocytes et de leur
comportement mécanique individuel, nous construisons une loi de comportement macroscopique du
muscle cardiaque. Nous modélisons un ensemble de cardiomyocytes par un réseau quasi-périodique
de barres élastiques interagissant par des moments. Nous nous plagons dans le cadre des grandes
déformations et utilisons une technique d’homogénéisation discrete. La loi de comportement s’obtient
par lintermédiaire de la résolution d’un systeme d’auto-équilibre non linéaire écrit sur une cellule de
référence de la structure discrete.
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INTRODUCTION

Cardiac modelling is a field of rapid progress. Better knowledge of the heart anatomy and of the heart func-
tions is expected from today advances in accuracy of experimental data, in functional imaging, in mechanical
understanding, and in numerical simulation.

The myocardium is never at rest and its overall deformation results from the individual deformation of the car-
diomyocytes, or more precisely of their contractile units. From an anatomic point of view, recent work has been
devoted to better describe the geometrical arrangement of cardiomyocytes and of cardiac fibres. Streeter [23],
for instance, conjectured that cardiac fibres follow geodesic paths on a nested set of toroidal surfaces. Such an
organization, which is specific to the myocardium, should probably be taken into account in a complete geomet-
rical and mechanical heart modelling. Let us mention that this hypothesis was investigated from a theoretical
point of view by Peskin [20], who examined its validity in models containing a design constraint on possible
stress-strain laws. In [18], we were interested in checking Streeter’s conjecture against experimental data on the
fibre orientation obtained in polarized light microscopy by Jouk et al [13].

From a mechanical point of view, several authors contributed in the derivation of constitutive laws for the
myocardium. Obviously, experimentation is difficult and the activation process adds to the modelling com-
plexity. We refer the reader to works by Arts et al. [1], Cai [5], Chadwick [7], Chapelle et al. [8], Fung [11],
Humphrey et al. [14], [15], Lin and Yin [16], Nash and Hunter [19], Taber and Perucchio [24], Usyk et al. [27],
Yin et al. [29] among many others and to references therein. The approach is generally phenomenological. A
basic way of modelling consists in assuming that the stress tensor o reads as the sum o = —pI +TT ® T + 0
of an active tensor T ® 7 where 7 denotes the unit vector of the fibre direction and where T is the active
tension, of a passive stress tensor o, and of a term due to the incompressibility. Elastic energies can be used as
well. Some authors postulate that the myocardium is a hyperelastic homogeneous material. Isotropic energies
were first considered, then extended to more realistic orthotropic functions. Experiments that are necessary to
fit the material constraints can be performed either on the passive myocardium, or in a contracted state.

We propose to follow a different approach and we aim at deriving a global — or macroscopic — constitutive law
for the myocardium from microscopic mechanical models. By microscopic level, we mean the cardiac cell level.
Cardiac cells, or cardiomyocytes, are small, 60 — 100 um long, cylindrical structures. In an adult myocardium,
the left ventricle is typically 8 cm long with a 5 cm inner diameter. Cardiomyocytes are connected into a
network by anastomoses making I-junctions or Y-junctions, see Figure 1. This specific organization drastically
differs from the cell organization into a skeletal muscle, where a fibre can consist in a single cell, or from the
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FIGURE 1. Myocardial cells joined by anastomoses (left). A bidimensional lattice (right).

cell organization into non-anastomic organs such as the liver. We propose to take advantage of the smallness
of the ratio of a cardiomyocyte length to the myocardium size in the one hand, and of the observed repetitive
arrangement of cells in the other hand, to derive a global constitutive law for the myocardial tissue. Such a pro-
cedure belongs to the field of homogenization techniques whose general description can be found in Bensoussan
et al. [2], Cioranescu and Saint Jean Paulin [10], Sanchez-Palencia [22]. Tt allows to replace a genuine discrete
model of the myocardium equilibrium that would take into account all myocytes separately by a continuous
medium model. The method relies on the knowledge of the mechanical behaviour at the microscopical level.
In other words, we need to precise the mechanical modelling of both the cardiomyocytes and the interactions
between cardiomyocytes. Stretching of the cardiac cells is mainly responsible for the elastic behaviour of the
myocardium. But it cannot explain elastic effects that are transverse to the myocyte directions. In the present
modelling, transverse effects are taken into account through interactions between connected myocytes. More
precisely, we model myocytes by extensible bars that remain straight and interactions by moments between
these bars. These moments are partly due to the bending of myocytes that we do not explicitly introduce in
our modelling. Actually, bending effects seem to be weak and experimentally out of reach. From a purely
formal point of view, bending can be added at the expense of a much more complicated macroscopical model,
see for instance [21]. Let us mention that from an experimental point of view mechanical data concerning the
stretching of isolated cells become available, see, for instance, Zile et al. [30].

Homogenization methods were applied during the last decades to many physical settings, such as composite
materials or trusses. Several techniques for proving convergence results were developed altogether. Here, we
follow the discrete homogenization approach originated in Tollenaere and Caillerie [25], and in Moreau and
Caillerie [17]. This approach is designed for discrete structures. Let us mention that Briane [4] was, up to
our knowledge, the first to use homogenization techniques for a cardiac tissue modelling. In his work, the
microscopic level is the fibre level, and the framework is linearized elasticity. We restrict our analysis to a
formal derivation.

1. MYOCYTE ARRANGEMENT AND LATTICE GEOMETRY

1.1. Numbering and connections of lattice elements

We model a set of cardiomyocytes by a lattice of bars linked at their ends. The bar junctions are the lattice
nodes. In order to write the lattice equilibrium system, we first need to identify the elements of the mechanical
system — here, the lattice nodes and the bars — as well as their interactions. We introduce in the following a
way of numbering nodes, bars and pairs of interacting bars that will be convenient in the use of the discrete
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FIGURE 2. In bold, an elementary cell with three nodes colored in red and five bars:
Nr = {ni,na,n3}, Br = {bi1,b2,b3,bs,b5}. There are twelve interactions: Cgr =
{e1,¢2,¢3,¢4,¢5,¢6, 1, €8, C9, C10, C11, C12 }-

homogenization method. It will allow to reflect the repetitive display of cardiomyocytes. These numberings are
the discrete analogs of reference configurations in continuum mechanics.

From now on we use the word “cell” with its classical meaning in the context of homogenization theory. No
confusion should arise with cardiac biological cells that we preferably call cardiomyocytes. Let us first describe
an infinite lattice. We consider lattices whose reference configurations (sets of numbers in our modelling) are
obtained by the repetition over Z?2 of a given elementary cell (a finite set of numbers in our modelling), that we
call the reference cell. See a bidimensional example in Figure 2. This cell contains “nodes” and “bars”. Their
respective numbers range over finite subsets Nz and Bz of N. With any v = (v!,12,13) € Z3, we associate the
v-cell which also comprises Card Nz nodes and CardBgr bars. Therefore, nodes and bars of the whole of the
infinite lattice are now numbered by quadruples 7 = (n,v',v%,13) in Ng x Z3, b = (b,v",v%,3) in Br x Z3.
This means that the node (resp. bar) referred to by 7 (resp. b) is the node (resp. bar) with number n (resp.
b) in the v-cell. We let N = N x Z* and B® = Br x Z3, and, in a slightly improper way, we say that A/
(resp. B>) is the set of nodes (resp. bars) of the infinite lattice.

b | b by by by bs

OR(b) niy N9 N9 ns ns

ER(b) n2 ni ns n1 ny
b) | (0,0) (1,0) (0,0) (0,1) (1,1)

Table 1: Bar numbering
c | C1 C2 C3 C4 Cs Ce Cr Cg Co C10 C11 C12
Pgr(c) | b by by b3 b3 by by by by by by by
Dg(c) ba b3 bs by bs by ba by bs by by bs
7(0) (050) (070) (070) (070) (050) (030) ('150) (07'1) (_17'1) (15_1) (07'1) ('150)

Table 2: Bar interaction numbering

Let us now specify in which way nodes in N connect to each other. First of all, we assume that each bar
in B* links two nodes and with each bar b we associate an origin node O(b) and an end node E(b). From our
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above description, any node O(b) and any node E(b) can necessarily be written under the form of a quadruple.
We assume that the origin node O(b) of a bar b = (b,v!,v2,13) associated with the cell (v!,22,13) belongs
to this very cell. Therefore, there exists n such that O((b,v*,v%,v3)) = (n,v*,v2,v3). Moreover, in order to
express the repetitivity of the lattice, we impose that the integer n depends only on b. It coincides with the
number of the origin node of the bar b in the reference cell and can be denoted by Og(b). On the contrary, the
end node E(b) that we can write under the form (m, !, 2, 43) does not necessarily belong to the same cell as
b. In all cases, it belongs to a cell that can be numbered by (v! + 8%, 2 + 62,13 + 83), where (61,62, 6%) € Z3.
Again, as the lattice is repetitive, m, 6!, 62 and §° depend only on b and they are denoted by Eg(b), 61, 62°
and §%. In other words,

O((b, ", 7%, v%)) = (Or(B), 1!, 12, 0%),  E((b,v",v%,0%) = (Br(b), ' + 8,02 + 62, 0% + 6°).
An example of such a numbering for the bidimensional example of Figure 2 is given in Table 1.

Notice that we could have described the lattice in the following equivalent way. Consider two finite subsets Az
and Br of N, respectively called the set of (numbers of) reference nodes and the set of (numbers of) reference
bars. Choose two mappings Or, Er : Br — Nz and a mapping § : Br — Z3 such that for any b € Bg,
(Or(b),0) # (Eg(b),d(b)) and such that the mapping Og x (ER,d) is one-to-one. Then, the set of (numbers of)
nodes (resp. bars) of the associated infinite lattice is defined by N = N x Z* = {f = (n,v);n € Nz, v € Z%}
(resp. B> = Br x 73 = {b = (b,v);b € Br,v € Z3}). Any v € Z3 is said to define the v-cell whose set of
nodes (resp. bars) is given by {(n,v);n € Nr} (resp. {(b,v);b € Br}). The overall origin and end mappings
O, E : B> s N are defined by

Vb= (b,v) € B®, O((b,v)) = (Or(b),v), E((b,v)) = (Eg(b),v + &(b)).
When a bar belongs to a cell numbered by v, its origin belongs to this very cell as well.

With the above numberings for nodes and bars, a reference configuration of an infinite lattice is well defined.
For future use, let us introduce a way of numbering interactions between bars. Such a numbering can necessarily
be written in terms of the previous definitions, but this would lead to cumbersome notation. When writing
mechanical balance in an actual configuration, we will assume in the sequel that any two bars sharing a common
end mechanically interact. From the repetitivity of the reference configuration, any given bar (b,v) in B>
interacts with a finite number of bars, and this number does not depend on v. It depends on b only. Moreover,
if a bar (b,v) interacts with (b,7'), then for any p in Z3, (b, u) interacts with (o', pu + v/ — v). It follows that
the overall set of interactions between connected bars can be numbered by a set

C® ={(c,v);c € Cr, v € Z%}

where any ¢ € Cr C N refers to the interaction between bars that can be written (b(c),v) and (b'(c),v + v(c)).
In such a numbering, care is devoted not to take into account an overall interaction twice. To this aim, it is
convenient to consider that all interactions ¢ in the lattice occur between a first bar P(¢) and a second bar D(é).
A repeated interaction referred to by ¢ operates between a first bar (Pr(c),v) and a second bar (Dg(c),v++(c)).
To sum up, all interactions ¢ = (¢, v) read alternately é = (P(é), D(¢)) with

P(é) = (PR(C),VI,I/2,V3), D(é) = (DR(C)ayl _}_71071/2 +’7261V3 +’73C)'

An example of such a numbering is given in Table 2. Notice that our method easily extends to other cases. For
instance, we could assume that some connections between bars are activated and some others are not. In so far
that this pattern is repetitive, it can be easily included in the definition of the set Cx C N and of the mappings
PR,DR : CR = BR and o CR — Z°.
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We now turn to finite lattices that we will actually consider in the remaining part of this work. Following
the general homogenization technique, we introduce a sequence of reference configurations parametrized by ¢.
Let w be a domain in R3. For any ¢, we define a subset Z¢ of Z3 by

Z¢ ={v ="’ € Z%ev € w}. (1)

This defines the cells of a finite net. We define a reference configuration associated with £ by its set of nodes
N& = N x Z¢ and by its set of bars B¢ = {b = (b,v) € Br x Z%; E(b) € N¢}. The overall interactions are then
described by C° = {¢ = (¢,v) € Cr x Z°; D(¢) € B¢}. Notice that v-cells “close to the boundary” of w are not
the exact repetition of the reference cell. Some bars and some interactions are ignored on purpose. This is of
no consequence for the homogenization process which deals with inner cells and disregards boundary conditions.

In the sequel, we will use the notation A\* = (ev!,ev?,ev3). The cells of an e-lattice are, according to Truesdell
terminology [26], labelled either by v € Z¢ or by A° € w. Therefore, v or A° play the role of discrete Lagrangian
variables. The Lagrangian configuration of the continuous medium to be defined will be w and its Lagrangian
variable will be A = (A}, A2 \3).

1.2. Actual geometry description

In the previous subsection, we defined the mechanical elements of the lattices and we identified them with
numbers. The geometry of a lattice in a given state is then fully defined once positions of nodes are given. We
choose an origin in the physical space identified with ]R3~ and we denote the position of any node 7 € N° by
Re (7). For any bar b € B, we define a branch vector B, a length /°* and a unit vector e*® by

= - . - - - b
BT = RE(EG) - R(O0(@), 17 =[BT, = . (2)

2. MECHANICAL MODELLING

2.1. Internal and external forces

The lattice is a mechanical system which consists of nodes and bars. Let us describe the internal efforts it
can undergo. We momentarily drop out the £ exponent.

Nodes are points. Therefore, they can be submitted to forces only. We assume that they interact with the
bars they are linked to. Consider a bar b with an end 7i . We denote by f*/® the force exerted by b onto 7.
Then, by virtue of the action-reaction principle, the force £/ b — _£b/7 ig exerted by the node 7 onto the bar
b. As for pairs of bars (b, V') sharing a common end, we assume that they interact by means of moments. Let
Mi’_/ l’-: be the moment exerted by b on I at their common end, then the action-reaction principle states that
MY /b — b/

We assume that the only external efforts acting on the lattice are forces f¢/™ exerted on nodes.

2.2. Balance equations

We restrict our analysis to a static framework, which means that we neglect the inertia terms. The lattice
equilibrium comes down to the equilibrium of each element of the mechanical system. Let us first consider the
balance of nodes. For any 7, it reads

3 £o/7 4 ge/n = . (3)
beO-1(A)UE~1(R)
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The equilibrium of any bar b results from the balance of forces and from the balance of moments it is submitted
to. The balance of forces reads

fOB/b 4 gBB)/6 — (4)

Setting, for each b, Tb = £EG)/ ’;, we immediately see that QL Inserting this relation in (3) and
using the action-reaction principle for forces, equations (3)-(4) simplify in

vieN, Y. T - Y Thifelti=o. (5)

bcO-1(7) beE-1(f)

The balance of moments exerted by all bars interacting with b can be expressed at any point in R®. We choose
to express it at O(b). Setting, for each & M = MP(©)/P(®) and using the action-reaction principle for moments,
it reads
VbeB, Y M- Y Miilte’ AT =0. (6)
zeP-1(b) éeD-1(b)

Equations (5)-(6) are the strong formulation of the balance equations. For an easy use of the homogenization
technique, they are preferably written in their weak formulation, also called virtual power formulation. This
weak formulation is classically obtained by multiplying (5) by virtual translations v(fi) € R®, by multiplying
(6) by virtual rotation velocities w(b) € R® and by summing over i and b. A change of summation which can
be seen as a discrete integration by parts yields the following system

vO) N =R, S T v(0@) - vEG)] + Y £/ v(@m) = o, (7)
beB ﬁe/\T
Vw(): B R, S M- [w(P(e)) - N+ B AT - w(b) = o, (8)
zel beB

where - is the inner product in R®.

2.3. Constitutive equations

We can uniquely decompose the effort T? into its axial (or normal) and transversal components with respect
to e and write
=N’ +T? with T!-e’=0. (9)

We assume that the axial force N? in any bar b depends on the actual positions of both its ends. The principle
of frame invariance then implies that N° is a function of their distance {* only. We express the repetitivity of
the lattice by assuming that a single such constitutive function A’ is valid for all bars b with a same b € Bg.
More precisely, we assume that

N = NP0, 1), (10)

where we make the constitutive equation for N b depend explicitly on a parameter lg that allows to model the
cardiomyocytes contraction. This parameter is the length at rest of b defined by N®(1§,18) = 0. A simple and

mechanically meaningful choice consists in assuming that there exists a function N? defined on R* satisfying
N?(1) = 0 and such that

Y(l,1o) € R*2, NO(1,10) = N”( ), (11)
0
or, equivalently, that

V(1) € R™2, Vk € RT, NP(k1,klo) = N°(1, o). (12)



8 TITLE WILL BE SET BY THE PUBLISHER

Similarly, we assume that moments MF? between interacting bars depend on the unit vectors e”(®) and
eP(®_ From the principle of frame invariance again, and from the repetitivity hypothesis, we obtain that the
constitutive equations read

M = M°(p°) P @ A eP) where p°=el(@ .l (13)

As will be seen in the sequel, the shearing component TE’ can be eliminated from the set of equations (7)-(8).
It is a Lagrange multiplier of this formulation. It is therefore natural that it is not involved in any constitutive
relation.

2.4. Deformation problem

When submitted to external forces and to some boundary conditions, the lattice deforms. The deformation
problem consists of balance equations (7), (8), of constitutive equations (10), (13), and of possible conditions on
some node positions. The primary unknowns are the node positions R(7). It can be noticed that in a different
modelling where myocytes would be represented by bending beams instead of straight bars the set of unknowns
would contain the node rotations. .

It has to be stressed out that the shearing forces T? are unknowns as well. As usual in the analysis of a
problem with Lagrange multipliers (see Brezzi-Fortin [3], for instance) they can be eliminated by taking in (7)-
(8) kinematically admissible virtual velocities. In the present lattice problem, the admissibility condition comes
from the fact that, by equation (2), the branch vectors B? are completely determined from the node positions
R(7) and, that the rotation velocities of bars are, in turn, determined from the node velocities. Therefore, the
kinematical admissibility condition for virtual velocities is expected to be

- 1 . -
wib) = [B® A (v(E(®B) - v(0()]- (14)

That such a choice for the test-functions actually allows to eliminate Tf;’ can readily be seen by adding (7) and
(8) restricted to pairs (v(-), w(-)) satisfying the compatibility condition (14). Terms containing Tf;’ cancel out.

Once the shearing forces eliminated, the only unknowns are the node positions. Assuming that the resulting
problem is well-posed and is solved, then it remains to go back to the equilibrium system and to solve in T?.
Equation (7), for instance, leads to

Vv() N =R, ST [VO®) - v(E®)] = - S /7 v(@) - Y Nle? - [v(0(b) - v(E(®))], (15)

beB neN beB

where the right-hand side is known. This is a linear system in T?. As T? is orthogonal to e’ there are two scalar
unknowns per bars. By choosing v equal to 0 in all nodes except one, we have three scalar equations per node.
Therefore, it may happen that the shearing forces T? are not uniquely determined. This feature is linked to
the notion of a hyperelastic structure. To deal with underdetermined efforts may be seen as a drawback and it
could seem preferable to get rid of them by working on the reduced formulation. Nonetheless we choose to keep
them in the formulation for that leads to simpler balance equations as well as to easier asymptotic expansions.
At each step of our analysis, results prove to be consistent and to be independent on the underdetermination
of the shearing forces.

3. ASYMPTOTIC EXPANSIONS

3.1. Asymptotic expansions of node positions

As explained in the introduction, we intend to take advantage of the scale separation to model cardiomy-
ocyte lattices by a continuous medium. We already introduced the homogenization procedure which consists in
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considering a sequence of lattices parametrized by € and in identifying the unknowns, and, more importantly,
the model that their leading terms satisfy by means of asymptotic expansions.

We recall that w is a domain in R3, and that, for any & > 0, Z¢ and N are defined by Z¢ = {v=>w"v%13) €
Z%ev € w} and N¢& = N x Z5. When considered for an e-lattice, the equilibrium equations or constitutive
equations that we gave in (7), (8), (10) and (13) will be called (7.), (8.), (10.) and (13.). We assume that
in any deformed state the lattices stay quasiperiodic. Then, the discrete homogenization method relies on the
Ansatz that, for any n € N, there exist vector functions R, R™, R"2,... defined on w such that, for any
e > 0 and for any 7 € N&, the actual node positions can be expanded as

R (7)) = RO(A°) + eR™ (X°) + 2R"™2 () + -+ -, (16)

where 7o = (n,v) and A* = ev. Notice that we assume that R? does not depend on n. This means that this
leading term is the same for all nodes in the cell numbered by v. Therefore, it locates the actual position of
this cell, and consequently will be interpreted as the deformation function of the equivalent continuous medium.
The following terms R™, R™2, ... of the expansions depend on n, they give at different orders the position of
the node n of the cell v relatively to R%()\¢).

Expansion (16) easily induces expansions for the branch vectors Bt = R® (E(b)) — R=(O(b)). Indeed, from
(16), we have simultaneously

R°(0(b)) = RO(\°) + e RORML(Z%) 4+ 2 RORM2(N) ... | (17)

and
R°(E(b)) = RO(\° +&8°) + e REROL (N 4 26%) + 2 REROZ(N 4 g6b) ... . (18)

Adding some regularity assumptions on R?, we can write that

0/y\e
RO(X\° +6%) = R°()) +6611Tfj)(5jb+--- . (19)
It follows that
Ve, Vb e B, B* =B (\°) + 2B (\°) + - - -, (20)
where B : w s R® is defined by
0 .
VA € w, B () = RPr(OIL()) - RORMIL()) 6%—/\9)61”. (21)
This immediately yields asymptotic expansions for 155 and e°b. Namely,
Ve, VE € 357 lsl; — 6lbO(/\s) _|_52 lbl(/\E) +---, and, esl; — ebO()\s) +Eeb1(As) +oe (22)
BbO

where " : w 5 R and e : w — R® are defined by 1" = ||B%||, and e = T

In order to be consistent with (22), we assume moreover that, for any b € Bg, there exists I§ : w — Rt such
that the length at rest I§ of any b € B° can be written as

1 =c1b(0). (23)
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3.2. Asymptotic expansions of tensions and moments

The expansions of 155 and e? that we obtained in the previous section provide expansions for the efforts by
means of the constitutive equations (10.) and (13.). Nevertheless, we first need to state how the constitutive
laws N¢® and Me=¢ depend on e. In the same way the dependence on € of the external forces £5¢/7 has to be
precised.

We assume that, for any b € B, the constitutive law N’ is, as a mapping from R? into R, of order 0 in e.
Recall that the second variable, which is present to take into account the length at rest, is in fact a parameter.
More precisely, we assume that there exists A : R? i R such that

Ve, Vb€ Br, V(l,lo) € R, N(1,1o) = N*(1, 1), (24)

where, following (12),

Y(l,1lp) € RY2, Vk € RY, N(k1, ko) = N°(1, o). (25)
This is an arbitrary choice with no consequence on our analysis. What is important and can lead to several
continuous models is the relative weight of the orders of magnitude in & of N** in the one hand, and of M®¢ in
the other hand. If the moments stiffness is too weak with respect to the tensions stiffness, then the moments do
not appear in the equivalent continuous model, and, if in addition the lattice is not triangulated, the equivalent
continuous model is singular due to the internal mechanisms. On the contrary, if the moments stiffness is
too strong, then the continuous model does not take into account the bar tensions. The choice that gives
the “richest” continuous model incorporating both bar tensions and moments consists in choosing an order of
magnitude of 1 for the moments. In other words, we assume that there exists M : [-1,1] — R such that

Ve, Ve € Cr,V¥p € [-1,1], M®(p) = e MO(p). (26)

Finally, we take £¢¢/® of order 1 and such that
Ve, Vi e N&,  f5¢/7 = gfe/m(X°). (27)
Let us examine the consequences of choices (24) and (26), and of the asymptotic expansions obtained in

section 3.1, on the orders of magnitude of tensions and moments. From (22) and (24), and making use of
property (25), we obtain that

Ve, Vb€ B°, Nbeth = NPO(10(X\%) 16(X°)) e (A°) + e[+ ] + -+ - . (28)
Using (22) and (26), we obtain that
Ve, Vé € €5, M = e MO(p(N°)) ePr(O(Ne) A ePrEO(N) 4 2] -+ (29)

where p0 = ePr(c)0 . gPr(c)0 . () 3 R We recall that, as explained previously in sections 2.3 and 2.4, the

shearing forces can be eliminated and can be obtained by solving the balance equations. This shows that (up

to their free component) they have the same order of magnitude in € as the tensions N cbesh, We conveniently
assign the same order to the possible free component. Then, we can write

Ve, Vbe Be, TSP = TOX) e[+ ]+---. (30)
Finally, letting

T = A0(1%0 18y €0 4+ T80 : o s R3, and, M = M (p) ePr()0 p @Pr()0 . )y R3, (31)



TITLE WILL BE SET BY THE PUBLISHER 11

we obtain the expansions we aimed at
Ve, Vbe B°, Vé e C°, Teb = TON) +e[--]+---, M =eMON) +&%[--]+---. (32)

4. CAUCHY STRESS TENSOR AND BALANCE EQUATIONS OF THE EQUIVALENT CONTINUOUS
MEDIUM

The internal efforts in the lattices are tensions and moments. In a continuous medium, all efforts are described
by a stress tensor field, that is a mapping defined on a reference configuration (or on the deformed configuration)
with values in (R®)? (or in the set M of real 3 x 3 matrices). This section is devoted to define a stress tensor
from the discrete sets of bar tensions and moments. In the same time, we derive the partial differential balance
equations fulfilled by the stresses. First, we obtain the internal efforts of the continuous medium and its balance
equations in the curvilinear Lagrangian representation given by the variable (A',A\2,\3). Then, we write our
results in the usual space representation.

4.1. Curvilinear Lagrangian representation

Balance equations. The balance equations of the continuous medium are obtained by letting € go to 0 in
the virtual power formulation (7.)-(8;) of the lattices equilibrium. They will yield the definition of the internal
continuum efforts.

To this aim, we choose in (7.) virtual velocities v°(7) that coincide with the values at A\® of a smooth virtual
macroscopic velocity field and we let € go to 0. Notice that a technical difficulty arises. Indeed, equations (7.)
involve sums ) - & (resp. D ;.z.) over the sets of all nodes (resp. bars) of the lattices, whose cardinals tend to
infinity when € goes to zero. To settle this question, we split such sums in two successive sums ) i . >, N
(resp. Y ,icze 2opep,) Over all cells and over all nodes (resp. bars) of each cell. Upon multiplication by e®,
any sum )i . over all cells may be interpreted as a Riemann sum of an integral over w. Therefore, for any
g smooth enough, €* Y ;. . g(v'e) goes to [ g(A)dA, when € goes to 0.

More precisely, let v : w — R3 be a macroscopic virtual velocity field equal to zero on dw, and, for any ¢, for
any 7 € N¢, let v¥(i1) = v(X\¢). A Taylor expansion yields:

ve(0(b)) — vE(E(D)) = v(X°) — v(X° 4+ &6%) = —¢ %()\5) 6 4. (33)

Inserting in (7.), making € go to 0, and letting £ = > .. f e/ we obtain the virtual power formulation of the
balance equation of the equivalent continuous medium. It reads:

Vv:iw— R, vjp, =0, —/sio-%d,w/f-vd/\:o, (34)
where, for any i = 1,2, 3, we define S : w — R® by
S0 =" Ts". (35)

beEBR

The three vectors S have to be interpreted as the stress vectors describing the internal efforts of a contin-
uous medium in a parametric Lagrangian representation, see Washizu [28]. Equation (35) gives their definition
in terms of the internal forces of a discrete structure. For more detail about this definition, see [6].
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A first symmetry property. We deal with (8,) in the same way. Let w : w — R® be a macroscopic rotation
velocity field and, for any ¢, for any b = (b, v) € B¢, let w®(b) = w(A?). Then, the difference w¢(P(¢))—w* (D(é))
is of order 1 and, from (32), M- [w®(P(¢)) — w*(D(é))] is of order 2. Therefore, the expansion of (8.) yields,
in the set of mappings from w into R?, the identity

> BYATY =0. (36)
bEBR

Denoting by L4 the skew-symmetric part of an endomorphism L, equation (36) is equivalent to

> (BT =0. (37)
beEBR

Indeed, for any a and b in R*, a ® b is defined by: (a ® b)c = (b - ¢)a for any ¢ in R3?. Therefore,
(aAb)Ac=(a-c)b—(b-c)a=(b®a)c—(a®b)c=2(b®a)lc, and, aAb=0] & [(b®a)* =0]
Result (37) will be used in the proof of the symmetry of the Cauchy stress tensor, see section 4.3.

Another expression of the stress vectors. The stress vectors S,i = 1,2, 3, have been defined by equation
(35), where any T, b € By, is given by equation (31). This equation contains terms T?° which cannot follow
a constitutive law, and that will actually be unknowns on the lattice problem on the reference cell, see 5.2. Let
us write out another expression of 8%, = 1,2, 3, that does not involve these terms.

Let vi : w — R3 be three macroscopic vector fields and now choose in (8,) virtual rotation velocities w* (b)
such that, for any e, for any b = (b, v', 2, 3),

we(b) = e zlb &b A vi(ew) 6P, (38)

We know from (22) that we®(b) expands as

we () = (lbioebo AVESP)AF) £ - - (39)

Therefore, the two terms of (8;) expand as

M- [w(P(@) - w(D(@)] = M- [(% iPr(e) _ ‘;5::;2 5iDR<c>> AV 4
ePr(c)0 eDr(c)0 (40
- ¢ [MCO A (lPR(C)O 5 — ot 5iDR(C)>] Vit
and
P AT weB) = (e ATO)- (P AVIE") 4w = & [ AT) Ae] . vig? 4.
41
_ E[Tbo_(Tbo _ebO)ebO R - eTi’O Vi “

Summing over C* and B°, and using the convergence of Riemann sums towards volume integrals, we obtain
the expected relation between the leading terms of the moments and the leading terms of the shearing forces.
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Namely,
. ) ePr(c)0 ePr(c)0 ) )
Vviiwes R,i=1,2,3, [ 3 MA ( e 0 = T 6’DR<C>) +3 e 6”’] vid\ =0, (42)
ceCr beBRr
or equivalently,
Pgr(c)0 Dg(c)0
b0 §ib _ 0. [€ i P e iD
Y TR8 = = 3 MO [ 6 - s 607 (43)
beBr ceCr
Definition (35) of $%, which can be written as S = Z (N 4 T80 5% now becomes
beEBR
Qi — Z NPOHO gib | Z M0 A [eDR(C)O iDr(c) _ © R (e)0 §5iPr(©) (44)
- lDR(C)O lPR(C)O )

beBr ceCr

4.2. Space representation and Cauchy stress tensor

In the homogenization process, the discrete variables (A€, A%, \%¢) = (ev!,ev?,ev?), v € Z¢, become con-
tinuous variables (A, A2, \3) which label the material points of the equivalent continuous medium. From (16),
we can see that the position in the physical space of a material point labeled by (A, A2, A3) is RO(A1, A2, \3),
and that the deformed space configuration of the continuous medium is Q@ = R%(w). The primary description
of the internal efforts of a continuous medium is given by a Cauchy stress tensor which is defined at each point
of the deformed configuration and, at each point, is a linear operator of the physical space. Let us explain how
the Cauchy stress tensor o : Q — L(R?) of the equivalent continuous medium can be expressed in terms of the
vectors S? 1w — R3 i =1,2,3.

It suffices to use R? as a change of variables between the parametric Lagrangian configuration w and the
0 0 0
deformed space configuration @ = R%(w). Let g(\) = (%%, 28, 2B)()\) be the mixed product of the partial
derivatives of R?. The usual space coordinates are denoted by z. With any v : w — R3, we can associate
vo (R%™!: Q0 R®. We loosely keep the same notation for both fields v and v o (R%)~!, and we denote by
V.V the gradient tensor of v with respect to z. Obviously,

ov ORO

= V,v——, 4
ox V"V ox (45)
and the virtual power formulation (34) becomes:
; OR? 1 1
Vv:Q— R, —/ S? ® o :Vzv—dw-{—/f.v—da::O, 46
Q( aX ) g Q 9 (16)
where : denotes the scalar product of two tensors. Therefore, the Cauchy stress tensor o is given by
1 0 . OR®
0o _ — SzO _ 47
o g ® 8)\l ’ ( )

and satisfies the virtual power formulation of the continuous medium equilibrium

VVZQHR:;,V‘BQ:O, —/o’oszvodqu/;f-vdx:O. (48)
Q Q
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4.3. Symmetry of the Cauchy stress tensor

In continuum mechanics, the existence of a Cauchy stress tensor and the fact that it is symmetric are derived
from first principles. Here, we recovered a Cauchy stress tensor from discrete tensions and moments. Let us
check that it is actually symmetric.

Result. The Cauchy stress tensor a° coincides with % Y ven, T ® BY and is symmetric.

Proof. Let A(-) : w — M3 be a smooth field of second order tensors and choose v(fi) = A(A*)R™()¢) in (7.).
The expansion of (7¢) leads to

/ [ Y T ®E®! —ROROL)] : 4dx =0, (49)
w " peBgr
or, equivalently,
Y T @ (RPRO! _RO=O!) =, (50)
beEBR

From the definitions (47) and (35) of 0° and S%, and from (21), we have that

o_leio  OR® 1 b0 b0 Er(b)1 Or(b)1
o ==8 ®W:—ZT ® (B —R +R ), (51)
g g beBr
so that (50) yields 0® = £ T @ B, which by (37) is symmetric. O
g beBR

5. CONSTITUTIVE EQUATIONS OF THE EQUIVALENT CONTINUOUS MEDIUM -
SELF-EQUILIBRIUM EQUATIONS

To complete the equivalent continuum model of the lattice, we need to determine the stress-strain relation
of the continuous medium. In the elastic setting we are dealing with, this means that we search for a con-
stitutive relationship (A, F = (F!,F2,F3)) € w x (R¥)® — SO\, F) € (R?)® such that, for any deformation
RO : w — R3, the stress vectors S, i = 1,2,3, are given, at any A € w, by S°(\) = (S°(}),S2°()),S3°())) =
SO(, %—f\‘f()\), %()\), %—f\‘;()\)). We actually gave in (35) and (44) expressions for S?. The reader remembers
that terms in the right-hand side of these equations contain both 2&> and differences REr()!1 —ROrM! § ¢ By,

oA
see (21), (31). Therefore, we must go a step further and be able to express RPr(®)1 —RO=M)L b ¢ By in terms
of OB
oA

As usual in the homogenization of periodic media (see Sanchez [22], for instance), this is done through the
solution of a mechanical problem “at the elementary cell level”. This problem consists of the leading constitutive
equations for bars and pairs of interacting bars that were obtained in section 3.2, and of so called self-equilibrium
equations of the reference cell. We begin by making out these balance equations.

5.1. Self-equilibrium equations

The reference cell self-equilibrium equations are derived from the lattice equilibrium equations, by means of
convenient choices of the test-functions. Namely, for any n € N, choose v in R3, and for any b € B, choose
w’ in R, then, in (7.)-(8.), take v*(71) = £ O(A°)v™ and w°(b) = n(A\°)w® where 6 and 7 are smooth scalar
fields defined on w. Then,

Ve, Vb € B, v¢(0(b)) — ve(E(D)) = e[0(X°)vOr®) — g(A° 4 £o®)vFr®)]) (52)
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and, by a Taylor expansion,
Ve, Vb € B, v (0(b)) — ve (E(b)) = e6(X°) [VOR(b) — vER(b)] + .- (53)
In the same way, we have:

Ve, Ve € €5, w® (P(8)) — w¥(D(2)) = en(A°) [wPa(©) — wPr()] ... | (54)

Expanding (7.)-(8.), we obtain by identification of the leading terms the following two equations:

VO:wr R YW e R?, / o)) > TN - [vOr®) — vPr®)] dx =0, (55)
w beEBR

Vn:we— R Vw’ e R?, / n(A){ D MO - [wPrE) — wPrO] 43 (BN ATY (V) -w”} d\ = 0. (56)
w ceCr bEBR

They are trivially equivalent to the following identities in the space of scalar functions defined on w:

Vv® e R n € Ng, Z T . [vOr() _ yPr()] =, (57)
beBRr
and,
Vwl e R, beBr, Y M. [wr() _wPrE] 4 Y (BYATY) . wh =0. (58)
c€Cx beBr

Equations (57) and (58) are similar to the full lattice equilibrium equations (7)-(8) we started with. Instead
of involving summations over the whole set of bars B¢ or over the whole set C%, they only involve the sets Br
and Cr that are associated with the reference cell. Moreover, they do not contain any external loading, hence
the denomination self-equilibrium equations.

5.2. The reference cell problem. Derivation of the constitutive law

The full reference cell problem consists of the above self-equilibrium equations and of the leading constitutive
equations in the space of scalar or vector functions defined on w

NbO — NbO(lbO,lg), M0 — MCO(ePR(C)O . eDR(C)O) ePR(C)O A eDR(c)O’ (59)
where N® = T% . e and where, for any b € Br, B = REr(®)1 _ ROr®1 4 R 5jb 160 — |BY|| and
B}y,

ebl = ]?b—?. In the self-equilibrium equations (57)-(58), the space variable obviously acts as a parameter. Indeed,

for any X in w, the vectors T?()), M()) and B*()) satisfy equations (57)-(58) taken at A. A similar remark
applies when equation (59) is added. For a given A and for a given value of %—lﬁ()\),i = 1,2,3, the whole set
of equations determine, upon well-posedness, vector values that we can call B®*()\), T%()), b € Br, M()),
¢ € Cr, which in turn determine (S19(X),S20()),S30(})). As %I/\‘? (A),i = 1,2,3, can be any (F!,F2 F?) in
(R?)3, we have in fact built a mapping from w x (R*)? into (R?)®. This mapping is nothing but the constitutive
law.

Let us, for convenience, and because this is the result we mainly aimed at, sum up the construction of this
constitutive law. It reads: Let A be in w, and let F = (F!,F2,F?) be in (R*)3. Find R™ € R%, n € NR,
TY € R, b € Br, M € R3, ¢ € Cg, such that, letting, for any b € Bg , BY = REr()1 _ ROr®)L | Figib,
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BbO
1 = ||B"|| and & = 750 the following equations in R or R® are satisfied:
vvr e RS, Y T [vOr() v ER()] =, (60)
beBRr
vwl € R3, Z M . [wFr(e) _ wDr()] 4 Z (BY AT) - wb =0, (61)
ceCr beBRr
NP — NbO (lbO’l(I;()\))’ M — McO(ePR(c)O . eDR(C)O) ePR(C)O A eDR(C)O, (62)

where N% = T% . !0, Then, define

i0 50 b0 5ib o, (el L, (c) O P (c)
. 1 — K3 C 1 C 2. C
Vi=1,2,3, 80 = 3 N st 4 3T MO N | Ty 0708 - T 5] (63)
beBr ceCr

As usual, the shearing vectors T? can be eliminated and we are left with a problem whose unknowns are the
vectors R™, n € Nz. It is readily seen that a solution cannot be unique since these vectors appear only through
their differences RPr(®)1 — ROr()1 They can be, at best, uniquely determined up to an additive vector. Other
singularities and loss of uniqueness or existence may appear, linked, for instance, to buckling or collapsing of
the reference cell.

The set of the last four equations associates with any (A,F = (F!,F2,F?)) € w x (R®)® three vectors
Sio()\, F) in R3. It defines the constitutive relationship of the continuous medium, which as expected is elastic.
The variable A came into play through the length at rest and can make the constitutive law nonhomogeneous.
Other nonhomogeneities could have been included in the myocyte laws.

It may be proved directly that, due to the frame invariance of the constitutive equations (10), (13) for bars
and for pairs of interacting bars, the equivalent medium constitutive equation is frame invariant as well. This
feature can also be seen as a consequence of the frame invariance of the elastic potential determined in section 6.

5.3. Computation of the constitutive law

Nonlinearity is present in two ways in problem (60)-(61)-(62). First, the constitutive laws are nonlinear.
Second, as we deal with large displacements, we did not linearize in our modelling terms such that B®® A T,
or [*°. This nonlinear problem can be solved, possibly after eliminating the shearing terms, with an iterative
procedure. We implemented its resolution by Newton’s method.

6. HYPERELASTICITY

We prove in this section that the equivalent continuous medium is hyperelastic, which means that its consti-
tutive law derives from a potential, see, for instance, Ciarlet [9], Gurtin [12].

The constitutive equations for bars and for pairs of interacting bars have been defined in (10) and in (13) as
mappings | — N (1,18) from R into R and p = M(p) from [—1,1] into R. When performing asymptotic
expansions, we already implicitly assumed that these mappings are continuous which is a mechanically sound
hypothesis. Therefore, they are trivially the derivatives of some smooth functions. Let us define the potentials
Wb(-) and W¢(-) by

b c
Ve RN N0 = TR0, e L1 —m0e) = ),
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where we omit, for convenience, the dependence in I§. As mentioned in section 5.2, the set of equations (60)-(61)-
(62) that defines the constitutive law associates (upon well-posedness) with any F = (FLF2,F3?) € ((R)?)? aset
of vectors BY(F) = RFr()L _ROr(! 4 Fi§i® where b € Br. With obvious notations, equations (60)-(61)-(62)
define for any b € Br and for any ¢ € Cr mappings

F — [°(F) and F — p°(F) = ePRO(F) . ePrI(F).

It is well known that in a mechanical system energies are additive. This leads us to expect that an energy, if
any, for the continuous medium is given by

W(FL,F2F) = > WPN(FLF2,F%) + Y We(p'(F', F?, F9)). (64)
beBr ceCr

Result. The mapping W =,z WP(IP()) + X cc,, WE(p°(-)) defined on (R?)? and with values in R is an
energy for the equivalent continuous model.

Proof. We have to prove that, for any F in (R3)3, and for any i = 1,2,3, S?(F) = o7 (F) where Si0 is defined
by equations (60)-(61)-(62)-(63). From definition (64), we see that we mainly have to differentiate I° and p°
with respect to F;, i = 1,2,3. We use incremental notations. For any b € Bg, let U’ = REr(®)1 _ ROr(®)1 ap(
let us define dU?, for any b € Bg, by

dU® = UY(F! + dF',F? 4 dF?,F? + dF®) — UY(F', F2 F?).

Analogous definitions apply to dB?, di°, de®, b € Bg, and to dp°®, ¢ € Cr. Then, from the definitions of all
mappings, we first obtain

dB® = dU’ + dF' 6" + ..., di®=e’-dB"+---, (65)
which provides
di* =e®-dU’ + e - dF* 6% +--- . (66)
Then, we obtain
de® = llb[de —(dB®-e") e’ 4 ---, dp° = eP”(e) . gePr(e) 4 dePrlc) . ePr(e) 4 ... (67)
from which we derive that
dBPr(©) dBF=(©)
c  — Pr(c) _ (oPr(0) . gPr(0)) gDPr(0)] . 22~ Dr(c) _ (oDr(c) | oPr(c)y oPr(0)] . 22
dp¢ = [eR (e'® e rl)) e"R ] 1Dn(0 + |e"R (e”® e ’l9) R ] 1Pl
Pr(c) Dr(c)
_ (ePR(O) p eDR(0) . [6PR(E) % DR A %] . (68)
Pr(c) Dr(c)
—  (ePr(e) p gDr()y . [ (&7 siPa(e) _ € siDa(e) i
= (e Ae ) [(ZPR(C) Dm0 ) )/\dF
ePR(c) P eDR(c)
- r(c) _ Dg(c)
+ T A dU e A dU ]+

where we used (65) in the last identity. Let us now differentiate W. By means of the chain rule, and using (66)
and (68), we have

Wb = NP(1%,18) (eb - dF? 6 + &b - dUP), (69)



18 TITLE WILL BE SET BY THE PUBLISHER

and
Pr(c) Dg(c)
¢ —  _ Aqe0/ ¢\ (aPr(C) Dr(c)y . 7[ € iPr(c) _ © iDg(c) i
dWe = —MP(p°) (e’ N e RlY) [<ZPR(C)6 R lDR(C)(S R >/\dF (70)
+ ‘;ELX A dUPr() _ ‘;;)R((C; AdUPRE] 4 ...
R\C Rr(C
Letting N0 = A%0(1%18) and M = M (p°) ePr(¢) A ePr(%)| we can conclude that
aw = > AW+ ) dWe
beBRr ceCr D) Pa(c)
i 0 A (€ iDr(e) € CiPr(e i
= |: Z Nboeb(sb+ Z MO/\(IDR(C)(SDR()_ lPR(C)(SPR( ))]dF (71)
bEBR ceCr Do) Pr(c)
Db . U P D) _ & " Pa(@)] 4 ...
+sz:N e’ -du +EC:M [Tome AU — s AdURO]
€EBr ceCr

From (44), the second line in (71) coincides with S® - dF*. The third one can be proved to be equal to 0 by
choosing v = dR™ in the virtual power formulation of the reference cell equilibrium, when the shearing forces
are eliminated. Therefore, we have actually proved that, for any i = 1,2,3, S® = 2% (F!, F2, F?). O

CONCLUSION

We proved that a repetitive lattice of elastic bars interacting by elastic moments is equivalent to a continuous
medium when the number of its elementary cells is large. We obtained a definition of the equivalent medium
stresses in terms of the bar tensions and of the moments between interacting bars, and we determined the
equivalent medium constitutive law. This law is obtained through the solving of a lattice problem on the
reference cell. Moreover, we proved that the law is frame invariant, hyperelastic, and easy to compute. This
work is directly applicable to the myocardium modelling, where data on the behaviour of isolated cardiomyocytes
become available. In this particular case, it will be of interest in future work to take into account the extra-
cellular matrix which is mainly responsible for the material global incompressibility.

We wish to thank Pierre-Simon Jouk, Yves Usson and Gabrielle Michalowicz who originated this work and shared with
us some of their biological knowledge during many fruitful exchanges.
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