Modelling and estimation of the cardiac
electromechanical activity

J. Sainte-Marie, R. Cimrman, M. Sorine and D. Chapelle

5th July 2004

Contents
1 Presentation

2 The 3D heart model
2.1 A constitutive law for the myofibres . . . . . . . . .. ... ..
2.1.1 The Starling effect . . . . ... ... ... ... ...
2.1.2 Thermomechanical compatibility . . .. ... ... ..
2.2 The electrical activation . . . . . . ... ... 0oL
2.3 'The rheological model . . . . . .. .. ... ...
2.4 Description of the parallel branch . . . . .. .. .. ... ...
2.5 Coupling with the arteries and the atria . . . . .. .. .. ..
2.5.1 The phases of the cardiac cycle . . . .. .. ... ...
2.5.2  Valves opening and closure . . . . .. ... ... ... ..
2.5.3 Windkessel model . . . . . ... ...,
254 Theatria . ... ... ... oo
2.6 Boundary conditions . . . . ... ... ... ... ...
2.7 Imitial conditions . . . . . ... ..o

2.8 Geometrical model . . . . . .. ...

3 Discretization of the 3D problem
3.1 Formulation of deformation problem . . .. .. .. ... ...

3.2 Time and space discretization . . . . . ... ... ... ....



3.3 Time discretization of the windkessel model . . . . . . . . .. 24

3.4 Numerical behavior . . . . . . . . . .. ... ... 24
4 Simulations 25
4.1 Calibration of the 3D model . . . . . . . . . .. .. .. .... 25
4.2  Simulations results (3D model) . . . . ... ... L. 25
5 Data assimilation 26
5.1 What is data assimilation 7 . . . . . . ... .. ... ... .. 26
5.2 Numerical tests . . . . . . . . .. . 31
6 Conclusion 32

* % ok %k k% k % ok %

1 Presentation

The knowledge of the heart behavior and the power of data acquisition tech-
niques (ECG, ultrasound or MRI images,...) have greatly improved during
the last decades. In-vivo measurements of the cardiac activity are very valu-
able for clinical purposes, but some crucial biological quantities are hardly
— or not at all — accessible, as e.g. for stresses / pressures or constitutive
parameters that may reflect pathologies. In order to reach these quantities
modeling is required. On the other hand the complexity and diversity of the
physical phenomena involved in the heart behavior are a major challenge for
modeling. In particular the various data (constitutive parameters, bound-
ary conditions, and so on) necessary to perform accurate simulations of the
models cannot be determined a priori.

The work presented in this document has two objectives. The first is to
build and validate a 3D simulator of the electromechanical activity of the
myocardium. The simulator is calibrated using measurements and classical
outputs of the cardiac activity and some importants parameters of the model
can be fitted by the user. Typically, the local excitability and contractility
of the muscle can be adjusted to simulate pathological behaviors.

The second objective is to “couple” the validated model with the in wvivo
measurements of the cardiac activity of a patient with a view to helping
clinicians to diagnose heart pathologies. Some of the parameters used in



the electromechanical model are crucial for medical purposes and the ap-
proach we propose aims at using measurements of the cardiac activity in
order to perform an identification of the parameters and state of the global
electromechanical heart model, hence to give access to quantities of interest
for diagnosing activation and contraction troubles.

This work has been carried out in the framework of the multidisciplinary
research project ICEMA (Images of the Cardiac ElectroMechanical Activity,
see [4, 31]) involving several research teams at INRIA, other academic institu-
tions and Philips Research France. In this paper, we focus on the mechanical
model, the electromechanical coupling and the simulation of a heart cycle;
the electrical activity modeling is not considered and for the simulations, we
use given propagating action potentials with possibly added perturbations.
The coupling of the 3D electromechanocal model with a data assimilation
procedure is shortly presented at the end of this paper and a future paper
will be devoted to this promising approach.

This paper is divided into four parts. The 3D excitation-contraction model
and especially the constitutive law of the myofibril inserted in the rheological
model are first presented. The second section is devoted to the implementa-
tion of the obtained model. In section 4, simulations of healthy and patho-
logical heart cycles are presented. Finally, the formulation of the data assim-
ilation technique for the proposed model in order to achieve state/parameter
estimation is desribed and preliminary results are given.

2 The 3D heart model

The necessary ingredients to obtain a 3D electromechanical model of the
myocardium are the following

e a constitutive law for the active and passive behavior of the fibres,

e the electrical activation that can be obtained fron numerical simula-
tions of simplified or more complex modeling of the action potential
propagation,

e a geometrical model of the myocardium with the fibres directions,
e realistic boundary conditions for the muscle,

e a model for the valve opening and closure in order to distinguish the iso-

volumetric phases from the non-isovolumetric phases and also a model
for the blood.



Each of these components is described in this section.

2.1 A constitutive law for the myofibres

It is commonly admitted that the model of actin-myosin bridge dynamics due
to Huxley [17] allows to describe the muscle contraction phenomena on the
sarcomere scale. Furthermore, Zahalak [41] has shown how the method of mo-
ments can be applied to this model in order to describe muscle-contraction on
the myofibre scale. However, most modeling endeavours still rely on heuris-
tic approaches and experimental testing, whether directly at the macroscopic
level [16], or in order to identify the attachment and detachment rates of the
bridges [40].

We have designed a chemically-controlled constitutive law of cardiac myofi-
bre mechanics introduced in [5] and consistent with the behavior of myosin
molecular motors [18]. The resulting sarcomere dynamics — derived by apply-
ing the moment-scaling method with the first two moments corresponding to
active stiffness and stress, see [5] — is in agreement with the “sliding filament
hypothesis” introduced in [17]. With a particular choice of the attachment
and detachment rates, it is compatible in particular with Hill’s force-velocity
relation, visco-elastic passive behavior and active relaxation descriptions.

Denoting by o, the active stress and by ¢. the strain along the sarcomere, the
relation between o, and €. is given by the following set of ordinary differential
equations:

To = kefe — (alée[ + ul)e + oolul+  7(0) =
ke = —(alée] + |ul)ke + kolul + ke(0) =
O = Te + pe€e + kebo

where u denotes the electrical input, with « > 0 during contraction and
u < 0 during active relaxation. The parameters ky and o( are related with
the maximum available actin-myosin cross-bridges in the sarcomere and p,. is
a viscosity parameter. The rate at which the cross-bridges unfasten during
passive relaxation is given by «|.|, and during active relaxation by |u|+a|é,|.

2.1.1 The Starling effect

The Starling mechanism is one of the most important regulatory mechanisms
that allows the heart to regulate its activity. When the preload increases,
the heart is able to increase its contraction. The preload corresponds to the
initial stretching of the cardiac fibres at the end of the diastolic filling, so
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Figure 1: The Franck-Starling curve (SV: stroke volume, LVDEP: left ven-
tricular end-diastolic pressure).

one can relate the preload to the veinous return and the auricular pressure.
In summary, increasing the ventricular end diastolic pressure leads to an
increase in the stroke volume, see Fig. 1. The Starling effect can also be
formulated saying the heart adapts its contraction so that the stroke volume
equals the end-diastolic volume.

The underlying physiological mecanism is the following: when the stretching
of the sarcomere increases, the troponin C calcium sensitivity also increases
leading to a growth of the cross-bridge attachment availability. This means
that when the stretching of the sarcomere increases we move from (a) to
(b) on the curve presented in Fig. 2-(i), note that the normal range for the
sarcomere length is denoted by /. This phenomenon is no more valid for large
strains of the sarcomere. The case (b) also depicted in Fig. 3 corresponds to a
normal deformation of the sarcomere whereas (a) and (c) corresponds to large
deformation (negative and positive). It appears that for large deformation
less actin-myosin cross-bridges can be created. This leads to the modified
constitutive law given by (2) where d(e.) behaves like the function presented
in Fig. 2-(ii).
T = ke — (|ée] + |u])7e + oo|ul+ 7.(0) = 7¢,

ke = —(alée] + [ul)ke + kolul+ ke(0) = e, (2)
Oc = d(56> (Tc + k650> + e

2.1.2 Thermomechanical compatibility

The stress in the myofibre is given by o., output of the system (2). Since
0 < k.(0) < ko, Eq. (2-b) ensures 0 < k. < ko so k. can be seen as the
progress of the chemical reaction (ATP hydrolysis) governing the creation of
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Figure 2: (i) the “length-tension” curve of a muscle with the three different

configurations of the sarcomere given in Fig. 3 and (i) the corresponding
modulation d(e.) of the active stress o..
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Figure 3: Three different sarcomere deformations.



the cross-bridges. For small k., few cross-bridges are fastened whereas for
k. ~ ko the majority of the actin-myosin bridges are attached.

Let us introduce the new variable v defined by
v =|ul + ale|

that is analogous to a time rate. Then the first equation of (2) can be
rewritten under the form

kc .C
To=w (—6 +ooluly TC) (3)

(%

and under this form, two contributions appears in 7.; one coming from the
chemical input u and the other one from the internal deformation variable ¢..
If we suppose €. is bounded with |¢.| < a then o, is also bounded. Actually,
using (3) one has

keéetooluls _ Ko
o

T.| <su -
I7e] < tp alé] + |ul

leading to |o | < £ + p.a.

Considering the variable 7. = 7. + k&, system (2) can be written under the

form
7.&6 = ke — (alée| + |u])7e + (00 — ko&o)|ul+ 7e(0) = 7¢
ke = —(alée| + [u])ke + Kolul ¢ k(0) = ke,
Oc = d(Ee)Te + pcée

+ k60§0

meaning that a convenient choice of o allows to consider £, = 0. So in the
following we consider the constitutive law is given by (2) with & = 0. We
introduce the new variable ¢ defined by 7. = k. and that could be seen
as the elastic part of .. Then replacing the expression of ¢ into the first
equation of (2) leads to

e . 0o ko e
€= &ec + k’_c|U|+ - k_c|u|+€c‘ (4)
Now let us define e, = ¢ + ¥ then &7 satisfies
. 0o ko
S _k_|u|++k_‘u‘+(€‘3_€€)‘ (5)

Neglecting the Starling effect i.e. d(e.) = 1, the mechanical power of system
(2) defined by o.£. can be written under the form

DD | (e
3 12 1es J : esp c
Oete ot + Hege +kegcge — ke 2
0 ke g¢ 2 e)\2

= % + peel + keete? + —(65) ((a|ée| + |u|) ke — kolul4)
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and using (5) it comes
keee? = kolul4(€)* — aolul ye¢.
So finally the mechanical power is

O (ke (e0)? ¢)? ,
v = LEED e ol + (@l + ) = oolulc9)
In the absence of external excitation (u = 0) we have the following thermo-
Lko(e9)2 .
mechanical interpretation: % appears as a free energy and p.2 +

a|éc|k6g appears as a nonegative pseudo-potential of dissipation so the
second principle of thermodynamics is satisfied. Since ¢ = 7=, rewritting (6)
as

. (Tc>2 . kO 7—52 Te
= j1cE2 + Z—kC(a‘EC| + |ul) + 92 Uok—c |4

O—céc -

it appears that energy can be supplied to the system only if v > 0 and
0<r. < 200];—;.

Taking into account the Starling effect, the previous equality becomes

0 (dle)3)
S

d(EC)(TC)Q

S (ol +Jul)

. -2
OcEc — = lceE, +

ko 72 Te o 72
v (55 - oo )l —2dca e @

2.2 The electrical activation

The propagation of the action potential u activating the muscle contraction
can be modelled by nonlinear reaction-diffusion equations [24|. For comple-
mentary informations, one can refer to the works of Hodgkin and Huxley [1]
or the simpler FitzHugh-Nagumo model [12|. For our simulations we have
mainly used the two-variable FitzHugh-Nagumo model proposed by Aliev
and Panfilov [2].

The membrane potential variations in one point of the myocardium along a
cardiac cycle can be represented by the curve in Fig. 4. We consider the Ca®*
concentration within the cardiac cells allows the creation of cross-bridges
only when the menbrane potential is greater then M Pj;,,. This means the
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Figure 4: Membrane potential along a cardiac cycle.

membrane potential and the input u in the constitutive law (2) are related
by:
u(t) = MP(t) — M Py,

For the simulations presented at the end of this document, several types of
activations have been used:

e a uniform activation i.e. no propagation of the action potential (for all
points M of the muscle u(M,t) = u(t)).

e A simplified propagation is considered with u(M,t) = M P(t — M) —
M Py, where I1, M is the projection of M along the apex to base axis
and V is the speed of the wave front.

e The membrane potential is simulated using the FitzHugh-Nagumo equa-
tions [12].

In each case, the effects of the mechano-electric feedback are not considered.

2.3 The rheological model

The myofibre constitutive law described above is now incorporated in a rhe-
ological model of Hill-Maxwell type |6, 14|, as depicted in Fig. 5-a. The
element F. accounts for the contractile electrically-activated behavior gov-
erned by (1) and each variable appearing with index c refers to this element.



An elastic material law is used for the series element £, and a visco-elastic
one is used for £,. Based on experimental results, the corresponding stress-
strain laws are generally assumed to be of exponential type for E, 38|, and
linear for £ [29]. The role of E, is to prevent the heart from overstepping
certain limits during filling or ejection, while £ and E. allow the contraction
and the active relaxation.

M S . Es Ec

— \WWW— Es
S oo —\MN E.
(a) (b)

Figure 5: (a) Hill-Maxwell rheological model and (b) strains in the active
branch.

The composition of deformations in the active branch is described in Fig. 5-b.
It follows from thermodynamical considerations that 1+ep = (14+¢.)(1+¢5)
while the generated tension oip is

_ O0c O

S l4e, 14e

(8)

Let us denote n the direction of the cardiac fibre in the myocardium and £
the Green-Lagrange strain tensor then one has

E1p = ZEZJTLZTL] (9)

ihj

01D

2.4 Description of the parallel branch

In paragraph 2.1 we have described the contractile element, we now focus
on the parallel element E,. Assuming we consider an isothermal process,
the satisfaction of the Clausius-Duhem inequality [37] when no dissipation is
considered leads to

e _ g owe
2— Po ag

po being the density expressed in the reference state and W¢ an elastic strain
energy potential. When viscosity is added, the Clausius-Duhem inequality
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becomes

[ies

owe . .

and a viscous pseudo-potential W* (L, g) accounting for energy dissipation
ought to satisfy
ow

OE

e}

>

-

VE. (10)

Equation (10) holds true when the potential W is continuous, positive and
convex. Moreover the value of W*" must be zero when the strain rate equals
zero [10]. Therefore, the components of the passive stress o, are defined by

owe n ow?
OE  OE
= oy(E) + oy (E E)

0(E,E) = 2py

Two strain energy functions satisfying the thermomechanical compatibility
are typically used in the litterature leading to Mooney-Rivlin materials and
Veronda-Westmann materials [13, 15, 22, 38|. Following this, W¢ appears as
a linear combination of the following terms

We = lil(jl —3) ... neo-Hookean term
W5 = ky(I — 3) ... Mooney-Rivlin term (11)
W$ = ks(e™1=3) — 1) ... Veronda-Westmann term

with the classical reduced invariants 1:1 = IlJ_g, fg = IQJ_%. The elastic
potential has to fulfill two different types of constraints: first the conditions
ensuring a correct formulation of the problem i.e. the thermomechanical
compatibility and the existence/uniqueness of the solution for the associated
boundary value problem. Second, to be admissible an elastic potential must
fit with experimental stress-strain curves. Following [32| and [38] we have
mainly used the two following elastic strain energy functions

We = Iil(jl — 3) + Kg(ig — 3) and W°= Iig(en(fl_g) - 1) - %(jé - 3)

For the viscous potential W, we follow Pioletti et al. [33] and we use

WY = nTr (C)*(I; — 3)

is the right Cauchy-Green deformation tensor defined by C;; =
. The calibration of the parameters appearing in W¢ and W will

where

c

11



be discussed in paragraph 4.1. It has to be noticed that several authors do not
restrict the choice of the constitutive law to those satisfying the mechanical
constraints and prefer to ensure only a good stress-strain curve fitting with
the experimental data. The most widely used experimental based strain
energy function is called “pole-zero” and has been introduced by Hunter |34,
30], an alternative to the “pole-zero” law is given by Lin [26]. The preceding
remark concerning the design of the constitutive law for passive fibres also
holds for active fibres, see [40].

The model enables that at any material point both the passive and the active
fibres can be defined in several preferential directions, as required by the
histological observations. Since we do not use the mixed formulation, we
considering the tissue is not purely incompressible and if ¢ denotes the second
Piola-Kirchhoff stress tensor, it comes B

g=-pJC " +oy(E)+0,(E E)+opn®n (12)
where the first term corresponds to the volumetric behavior with p = — K (J -
1), K being the bulk modulus. o5(E) (elastic part of E,) and o) (E, E)

(viscous part of E,) accounts for the stresses in the parallel branch have
been described above and J = det([£) where E is the deformation gradient.

Using Egs. (2), (8), (9) and (12), the corresponding complete governing 3D
mechanical equations, presented in [6], are given by the following set of equa-

tions )

py —div(E . g) =0

o= —pjg_l +Up(£,£) toipn®n

1D = T1e, = Tte.

/7:—0 = kcéc - (a‘€c| + |U|)’7’C + Uo‘U‘+ (13)
ke = —(alée] + |ul)ke + kolul +

Oc = d(€C> (TC + kch) + ,ucéc

os = Esl(eip —ec) /(1 4+ €.)]

E1p = Zi,j El-jnmj.

2.5 Coupling with the arteries and the atria

The successive phases of the cardiac cycle are distinguished in the coupling
conditions between the ventricle and other parts of the cardiovascular system.
With P, denoting the blood pressure in a ventricle, P, the pressure in the
corresponding artery and P, the pressure in the atrium, the ejection occurs
when P, > P, whereas the mitral valve opens when P, < Py, see Fig. T-a.

12



2.5.1 The phases of the cardiac cycle

As already mentioned the cardiac cycle contains four successive phases, the
isovolumetric contraction and the ejection during the systole, the isovolumet-
ric relaxation and the filling during the diastole. From a mechanical point
of view, the formulations of the complete problem arising during the isovolu-
metric phases and the non-isovolumetric phases are distinct. Let us consider
problem (13) written in a shortened form

pjj —div(E . g) =0 (14)

if at time ¢, I'® denotes the surface of the ventricular cavity and A® its
interior then the volume V® of each ventricle is defined by

v = / AV (15)
A®)

and using the Ostrogradski theorem it comes

1
Ve = 3 / xingt)df(t) (16)

r®

where z = X + y are the actual coordinates and n® points out of the cavity.
Using (15), one can write

= / gintdr® = D(y)
()

and during isovolumetric phases, problem (14) becomes

pij— div(E . 2) = 0
(F.g)n=—-P,n on r® (17)
/) = D(y, ) =0

P, being the Lagrange multiplier of the volume conservation i.e. V® = (.
By contrast during the ejection and the filling, the boundary condition of
problem (14) can be written in the form

_ ®)
P,n onT (18)

Il 19

n =
Pext

13



with P, equals P, or P,;. Due to numerical considerations the isovolumetric
criterion (17-b) and (17-c) is transformed into a penalization problem under
the form

(F.o) . n=—P, on I')

P, = AV®

with A > 1. When modeling a cardiac cycle, the interaction between the
blood and the intraventricular cavities corresponding to the equilibrium equa-
tion
(ig) .n=-Pn

in (17) and (18) has to be considered. Because of the computational costs
induced by taking into account a distributed flow model, the inertial effects
of the fluid-structure interaction are neglected thus reducing the interaction
force to the effects of blood pressure in each ventricle. For the moment we
consider the blood in each ventricle is completely characterized by a uniform
pressure P, and the cavity volume V.

2.5.2 Valves opening and closure

The valves are not modelled using a distributed model but adding constraints
on the volume variations of each ventricle. This is achieved by the means of
an analogy with a double contact problem.

Let us consider two solids S; and S5, the distance and the contact force
between them are denoted d and F' respectively. If there is contact between
S1 and S5 then d = 0, if not then /' = 0 so that these two situations are
summarized by F'd = 0.

Sy

Figure 6: Contact between two solids.

The coupling conditions between a ventricle and the corresponding artery
can be formulated similarly, the blood flow leaving each ventricle ) = —V

14



being defined by Q|P, — Py|+. Also considering the atrium, one obtains

@ >0 when P, = P,, (ejection)
@ =0 when Py < P, < P,, (isovol. phases) (19)
Q <0 when P, =P, (filling).

This formulation fully describes the blood flows through the valves but, since
relation (19) is not regular, its discretization leads to numerical difficulties
and a regularized version is needed (Fig. 7-b). The regularized version must
satisfy the condition % > 0. We consider during the ejection, the blood
flow is proportional to the difference of pressure P, — P,, (see [28]) leading
to

Q ~ Kar(Pv - Par) (20)

with K, = ”p—lf, R being the radius of valve, p the blood density and c the
velocity of wave propagation. Relation (20) written under the form P, ~
P, + % is analogous to (18-b) where a small resistance due to the valve
diameter is added. During the filling one has similarly QQ ~ K,(P, — Py) so
the regularized version of (19) is

Q = ehPv=Par) _ gl2(Pas=P)  when P, — 6; < P, < Py + 09
Q:Kar(Pv_Par)+QO when PVZPar+6O (21)
Q:Kat(Pv_Pat)+Ql WheanSPat_dl

where )y and ()1 ensure () is continuous and differentiable with respect to
its variable and (dg, d1) are chosen small enough. Thus the pressure P, in a
ventricle is related to the change of volume of the considered ventricle using
(21) i.e.

Vi = Q = f(Ps, Par, Puy). 22)

When considering the left ventricle (P, P,;, Pat) corresponds to (Py, Pao, Pat1)
and similarly for the right ventricle (P, P,;, Pat) becomes (P, Py, Patr)-

2.5.3 Windkessel model

To obtain a realistic pressure-volume response of the model, it is necessary to
model the external blood circulation and thus to consider that P, vary along
the cardiac cycle and especially during the ejection. For this it is possible to
consider that P, follows a 0D windkessel type model or a 1D model of the
blood flow. Up to now, the use of a 3D model of blood flow in arteries is
out of reach. A simplified 1D model coupled with the heart model has been
tested, the results are not presented in this article and will be published in
a future paper.

15
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Figure 7: Aortic valve model, (a) mechanism and (b) formulation as a double
contact problem, (- -) relation (19) and (-) relation (21).

Windkessel and similar lumped models are often used to represent blood
flow and pressure in the arteries. These models can be derived from electrical
circuit analogies where current represents arterial flow and voltage represents
arterial pressure. The idea for the windkessel model was originally proposed
by S. Hales in 1733 and further developed by O. Frank in 1899. For more
informations about Windkessel models of blood flow in arteries, one can refer
to [3, 39, 35].

The 4-element Windkessel model is governed by:

ar_Psv Rc . N
BB B0+ 01, (RGO +1G) (23)

Rp

where 1|, (t) = 1 when @ > 0 and else 1), () = 0. P, is the systemic
venous pressure, [7. the resistance due to aortic or pulmonary valve, IR,
the peripheral resistance in the systemic or pulmonary circuit, C' the arterial
compliance and L the blood inertance. The right-hand side of (23) is nonzero
only during the ejection, i.e. @ > 0. In Fig. 8, the arrows for C' and R,
indicate these quantities can be functions of P,,.

For each ventricle @) being given by Q = f(Py, Par, Pat), Eq. (23) means that
the derivative of the displacement for the intraventricular cavity has to be
calculated up to the third order. Since the mechanical model has few inertia
and damping, such a calculus is numerically hardly accessible and we neglect
the inertance i.e. L =0 in Eq. (23). For the left and right ventricle Eq. (23)
is respectively written under the form

Pao - W(Pam -P1v7 Psw Pat,l) and Pap - W(Pap7 Prv7 Psw Pat,r)

CPy +

the parameters could be different for each Windkessel model.

16



AN

Figure 8: The 4-element Windkessel model.

2.5.4 The atria

We focus on the modelling of the two ventricles. The atria which allow to
fill the ventricles during the diastole are not considered and we only assume
that a low blood pressure P,; in each atriun allows the filling of the ventricles.
Thus the atrial contraction at the end of the diastolic phase is not taken into
account and one has

Pat,l =0 and Pat,r =0.

Even if the ventricle state — the initial stretching of the cardiac myocytes
— prior to contraction is determined by the preload i.e. the atrium pressure,
the atrial contraction (at resting heart rates) normally has little influence on
ventricular preload and the most significant effect is created by the pressure
drop in the ventricle due to passive relaxation thus most ventricular filling
is passive. However, at high heart rates, enhanced atrial contractility (due
to sympathetic activation) will play a significant role in ventricular filling
and in determining preload. Note that to obtain more complex behavior, the
modelling of the atrial contraction could be achieved using a 0D model.

2.6 Boundary conditions

The boundary conditions used for the structure take into account the two
following phenomena

e the base of the myocardium is fastened to the arteries and the veins,

e the apex of the myocardium is almost still along a cardiac cycle whereas
the base moves.

The previous requirements are satisfied using springs and dashpots located at
the top end of the mesh, see Fig. 9-a. Moreover a translation of the muscle

17



(a) (b)

Figure 9: Springs and dashpots fastening the myocardium.

displacements ensures the apex is still. Note however, that this is only a
post-processing of the results.

Let us consider a point A belonging to the curve A (solid part) of Fig. 9-b,
if A® denotes the position of A at time ¢ then the force acting on A is

FA = (A0 — A®) — A",

The velocity term A(t) is discretized as A(t) ~ é(é(t) — ALY,

Now if one considers a point B belonging to the dashed part of A, it is
necessary to allow B to have displacements in directions & and y especially
during ejection and filling phases. So the force acting on B has the expression

FP = }I1,(B® — BY) — c11.B"

I1, being the projection on the z axis.

2.7 Initial conditions

Appropriate initial conditions need be prescribed. We consider the initial
time ¢, corresponds to the end of the fillingi.e. Q = -V =0 and u = 0.

18



In practice, the initial conditions are difficult to estimate. For the simula-
tions, we start with realistic initial values for the displacement y(M,ty) =
yo(M), the strain (M, ty) = eo(M), the strain in the contractile element
ec(M,tg) = eco(M), the stiffness and the stress in the contractile element
ko(M,ty) = keo(M), 1.(M,ty) = T.0(M). Since the system is supposed to
have reached a static equilibrium, we also have P, (ty) = Pay(to)-

It has to be noticed that the system is periodic and rapidly reaches an at-
tractor (limit cycle), whether after initialization or a modification of the
parameters. Thus the initial conditions are “forgotten” by the system after a
few cycles, see section 4.

2.8 Geometrical model

The geometric model used for the simulations (Fig. 10) comes from the Bio-
Engineering Institute (Auckland university) and contains the cardiac fibre di-
rections. The mesh has been refined using a surface mesh refinement (YAMS)
and a 3D automatic mesh generation (GHS3D), both tools being developed
by the INRIA team GAMMA.

Figure 10: Mesh of the heart.

To each point of the mesh corresponds a vector giving the cardiac fibre di-
rection at this point, see Fig. 11.

Due to the shape of the myocardium mesh, in order to be able to speak of the
volume for each cavity, see Fig. 12-a, it is necessary to modify the available
mesh to close each intraventricular cavity. Let us define for each ventricle
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Figure 11: Cosine of the angle between the fibre direction and the apex-base
axis.

8Fg), the contour line of Fg) and B« the barycenter of the points of the

O
mesh drawing up the curve OF(Ot), see Fig. 12-a. Then we add to the initial
mesh, tetrahedra built using point B.¢) and the points of the contour line
o

8Fg), see Fig. 13.
3 Discretization of the 3D problem

Assembling the modelling previously presented for the contractile fibres, the
muscle matrix, the valve opening and closure, the arteries, the atria, we
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(a) (b)

Figure 12: (a) the geometrical model and (b) interior of a ventricular cavity
(valid for the left and right ventricle), definition of I‘g) and I‘(Ot).

Figure 13: “Closed” mesh of the myocardium.
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obtain the following formulation

(pj —div(E . g) =0
g=01pn®@n+ Eye)

— _Oc __ _0Os

1D = Tte, = Tte.

To = kefe — (aléc] + [u])Te + oolul

ke = — (g + |u|)ke + kolul+

O, = d(Ec)(Tc + k:ch) + :ucéc

Og = Es[(ng - 56)/(1 + 50)]

(P) § €D = Zz’,j Eijning (24)
- .lv - f(Plvu Pao; Pat,l)

_"/rv = f(PrVa Pap> Pat,r)

Pao = W(Pa07 Hva Psva Pat,l)

Pap = W(Pap, Prv, PsV7 Pat,r)

Pat,l =0
Pat,r =0
. P, =0.

3.1 Formulation of deformation problem

Let us denote by Q) the domain occupied by the heart tissue at time ¢,
by T® = Fg) U F(Ot) (see Fig. 12-b) the surface of the ventricular cavity,
by V® a suitable space of admissible displacements and by Vj the space
of displacement test functions, cf. [8]. In the context of total Lagrangian
formulation, the overall dynamic equilibrium and valve equations read

/ pi® - 0dQ© 4 / ;0 B5dQ©) 4 / POFnOpdr® =0 vo € (25)
Q(0) (0) 17(0)

V0 = f(p®, p® WYy —q (26)

ar » * at

where 6 Ej;(y;v) = %(vm + ;i + Yk.iVk; + Yk ;Vk;) and FZ-]_-1 are components of
F~1. Note that P,, the pressure in each heart ventricle is a scalar constant.
We have also approximated V', the volume of each ventricle defined in (22) by
(V® — VD) /At. The cavity volume is obtained using the surface integral

1 1
Vo ! / 2n0dT® — : / 5, F- 00 dr® (27)

r® )

where x = X + y are the updated coordinates.
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The deformation problem is completed by proper initial and boundary con-
ditions as described in paragraphs 2.6, 2.5 and 2.7. We use, for example, the
assumption of the static equilibrium at the initial time.

3.2 Time and space discretization

The equilibrium equation (25) is time-discretized using the Newmark scheme.
Other equations with time rates (e.g. (8)) are discretized using a mid-point

scheme i.e.
() () + ()2
()" m () = () /At

This leads to the nonlinear problem in y, €. and P, for each time step.
Note that . (the deformation of the contractile element) is evaluated at the
Gauss points and can develop independently on y because of the series elastic
element.

For the discretization of space we use the finite element method. The discrete
nonlinear systems of each time step are solved by the Newton method. The
tangent linear system exhibits the following structure:

K Ki2 1L Ay f
Kz Ko O Ae. | =1 8 ’ (28)
I, 0 Il AP, h
where f is a discretized version of (25), g follows from (8)
o l+e.
g.—ac—081+88 =

and h corresponds to a discretization of (26). If the Windkessel model pre-
sented in paragraph 2.5.3 is used for each ventricle, the arterial pressures
P,, and P,, are included in the state vector becoming (y,e., P)T where
P = (P,,P,, Pap)T is now a vector of pressure variables and Il3 is a ma-
trix. The same holds for the case when only a ventricle is coupled with
a Windkessel model with, e.g. for the left ventricle, P = (P,,P,,)T and
P, =0.

To solve (28) we exploit the structure of Koo := g—fc which is diagonal and
thus ¢, can be easily eliminated. Although II3 := g—l’;v is also diagonal, it
is not eliminated since its Schur complement IT; I3 *II, would change the
pattern of nonzeros of K71, leading to time-demanding memory reallocations.
Hence we solve

K1 — Ki2Kay Koy 1T Ay \ _ (- K1:Kap ' (29)
II, I3 AP, h
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by an unsymmetric multifrontal solver (UMFPACK package [11]), followed
by
Ac. = Kap (g — Ka1Ay) . (30)

Then we update the Newton iterates by y <« y — Ay, €. «— & — A&,
P, — P, — AP,.

3.3 Time discretization of the windkessel model

Further let Q) be identified with f (P\St), Paff), Pa(ﬁ)). Then for each ventricle
we use

V(t+At) o V(t

) B Q(”%) B QA 1 QW

_YS)

At 2 ’
leading to the first equation to be satisfied:
V(t-i—At) - V(t) + H(Q(t-FAt) 4 Q(t)) =0. (31)
2

Equation (23) is also discretized using the mid-point scheme
A
Q(”%) - Q(t+At) _ Q(t) P(H%) N Pafer t) Paff)
At o At ’
which leads to

(t+AY) Q)
P(H_At)—P(t)—}-g %(Par +Par>_Psv
ar ar C Rp
Rc Q(t—i—At) + Q(t) ORC
- (@ IEE ) SR - 11) ) =0 32)
P

At t = t, we assume a steady state, where P,, = 70 mmHg and thus Q©) = 0.

3.4 Numerical behavior

In the simulations presented hereafter, the time step is constant with At = 2
ms. A correct simulation of each isovolumetric phase whose length is roughly
50 ms imposes that the time step does not overstep a limit (arround 5 ms).
This constraint can be, to some extent, relaxed during ejection and filling so
a adapative time step procedure could be introduced.

The simulations carried out have shown the global damping coming from the
pseudo-potential W* and the inertia term pg have little influence compared
to other internal forces.
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4 Simulations

4.1 Calibration of the 3D model

A correct calibration of all the parameters appearing in the model is very im-
portant in order to obtain realistic simulations. The parameters to calibrate
can be divided into three groups:

e the parameters used in the arteries models can be found in the litter-
ature see especially the works of Stergiopulos et al. [35, 39| and the
references therein.

e The unknow quantities appearing in the contraction constitutive law
(2), mainly ko and oy can be estimated easily since they represent the
asymptotic value for k. and 7. respectively that can be found in the
litterature e.g. [40].

e Concerning the calibration of the passive behavior of cardiac fibres, the
available data e.g. in [38] and [32] are not in agreement and deal with
general soft tissues but not typically the myocardium.

4.2 Simulations results (3D model)

We present some results of simulation carried out with model (24), animated
versions of these results can be seen on the WEB site of the MACS project,
see www-rocq.inria.fr/MACS/Coeur/index.html.

The presented results have been obtained after a simulation of several cardiac
cycles so the approximate initial conditions are of no significance. Fig. 15
represents some classical indicators characteristic of the cardiac function.
From left to right: left ventricle volume variations, blood pressure varia-
tions, PV cycle, aortic flow, mitral flow, contractile stress for a given point
of the myocardium. Fig. 16 illustrates the Starling effect. Two PV cycles ob-
tained with two different mitral pressures are plotted and the stroke volume
increases with the mitral pressure.

Furthermore, the stability of the model is demonstrated by results obtained
over a sequence of cycles, which show that the system rapidly reaches an
attractor (limit cycle), whether after initialization or a modification of the
parameters, see Fig. 14.

We also present simulations results representing pathological cases. We have
considered that the contraction parameters ky and o were reduced in a given
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Stress in E. (Pa)

Figure 14: Stress o1p in a fibre over 10 cycles; a modification of oy, kg and
u is introduced before the fourth cycle.

area of the myocardium, see Fig. 17. The stresses ans strains at the end of the
ejection are first presented in Fig. 18. It is to be noticed that the kinematics
of the muscle are only slightly modified by the variations of ky ans oy. The
global indicators of the cardiac function for the pathological case but also for
a reference situation are presented in Fig. 19.

5 Data assimilation

5.1 What is data assimilation ?

The aim of data assimilation is to incorporate measurements into a dynamical
system model in order to produce accurate estimates of the current — and
possibly future— state, parameters, initial conditions and input of the model.

To produce an accurate simulation or prediction using a model, precise knowl-
edge of the considered phenomenon (boundary and initial conditions, param-
eters) is needed. This is achieved by using measurements and assimilating
those observations into the model. In meteorology and oceanography, thou-
sands of measurements are received in real time from a variety of captors e.g.
satellites, aircraft, ships and land stations. Concerning muscle mechanics,
the observation measurements are scarce in space and time and noisy so the
set of quantities to estimate has to be chosen carefully and its size ought to
be realistic with respect to the available measurements.
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Figure 15: Global indicators of cardiac function.
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Figure 16: PV cycle for 2 different mitral pressures.
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Figure 17: Area where the contractility is reduced (in red).

Without any model, the available measurements are often insufficient to de-
termine the state of the considered system. So if one wants a detailed com-
plete picture, we need additional information. Assimilation is the process of
finding the model representation which is most consistent with the measure-
ments. Data assimilation has been widely used in various forms in meteoro-
logical and oceanographic modelling since the 1950’s. The various forms use
ideas from different branches of mathematics e.g. probability, optimization
and control theory.

H being the observation operator, Y () the available measurements and X ()
the model response, the general objective of the data assimilation is the
minimization of the cost function i.e.:

J= / IV (1) = HX(1)|2dt + penalty
I

that is performed over the set of variables to estimate (state, parameters,. .. ),
|||l is a suitable norm associated with the problem formulation. If I denotes
the complete simulation time interval [ty, T'], the assimilation technique is said
to be variational and corresponds to an optimal control problem, see e.g. [36,
9, 25, 27|. By contrast if at each time step ti, I = [to, tx], then the filtering
technique is said to be sequential. This approach has been introduced by
Kalman in the 1960’s [19, 20] and widely used in various domains |23, 21, 7|.
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Figure 18: (a), (b) Stress o, in kPa (end systole) and (¢), (d) Strain (||e.||)
(end systole), left column: reference situation and right column pathological
case.
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5.2 Numerical tests

Due to the complexity of the model and to observability considerations it is
not possible to estimate all the quantities appearing in problem (24). Thus
we focus on some of these parameters that are especially crucial for medical
purposes in order to detect activation and contraction troubles, namely the
parameters oy and ko. But even if the electrical activity modeling is not
considered in this study, we are interested in the estimation of the electrical
activity only from displacements measurements of the myocardium. Finally
we are interested in the estimation of parameters kg, oo and input u from
the available measurements.

The numerical validation of the sequential and variational data assimilation
techniques are in progress. The results presented here have been obtained
using numerically simulated observation measurements assimilated with the
complete 3D problem (24) but over a simplified geometrical model depicted
in Fig. 20.

Figure 20: Simplified mesh used for the data assimilation (=~ 900 nodes).

Both the sequential and variational techniques briefly described in paragraph
5.1 have been tested. Without considering the computational costs, the re-
sults given by the two methods are equivalent. The data assimilation process
is the following:

e problem (24) is simulated with given input u and parameters ko and
0o. Let us denote

y(M, 1)

ec(M,t)

T.(M, 1)
P(t)

X(M,t) =
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the obtained response of the model.

e The observations {Y (M, t,)}«,, are obtained as follows
Y (Mg, t,) = HX (M, t,)

H being the chosen observation operator. Here we consider only dis-
placements for points located at the epicardium and endocardium of
the muscle are recorded.

e Starting from given input @ and parameters ko and 6, different from
the exact ones, the data assimilation is carried out. The objective is
to obtain 4 &~ wu, ]Afo ~ ko and 69 = 0g. An example of estimation for
og is given in Fig. 21, for this simulation we have considered the dis-
placements at all the epicardium and endocardium nodes were known.
We have also assumed oy(M) is constant when M varies from the en-
docardium to the epicardium.

(b)

Figure 21: (a) reference oy and (b) its estimation using the variational tech-
nique.

6 Conclusion

We have proposed an electrically activated 3D mechanical model of the heart
muscle. The modelling, the numerical implementation and the simulations
are presented in this document. The main conclusion is that, even if more
complete validations have to be carried out, our model seems to be able to
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reproduce the actual behavior of a pathological or healthy heart. Concerning
the 3D model, the works in progress are the following

e complete validation and calibration of the model,
e mathematical analysis of the model,
e data assimilation in 3D with real data,

e coupling with blood flow models (arteries and heart cavity).

We have also presented preliminary results concerning data assimilation tech-
niques in order to detect activation and contraction troubles. Another ob-
jective is to estimate APD (action potential duration) and DT (depolariza-
tion time) from measurements of the mechanical activity synchronized by
standard ECG. If this were possible, a complete estimation of the electrical
traveling wave, useful to detect conductivity trouble, would be possible from
the mechanical response of the sytem.

One of the major difficulties to be confronted in this approach lies in the con-
flict between the complexity of the model to be used (number of quantities
to estimate) and the features (scarcity, quantities measured,...) of the mea-
surements available in a clinical environment. Current techniques provide
data on the electrical activity and the ventricular wall displacements. Even
if the identification results presented here only used displacements measure-
ments, in practice complementary data pertaining to stresses in the muscle
or blood pressure — especially during isovolumetric phases — may be needed.
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