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1. Introduction
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Introduction 4

Classical Quantum
Microscopic  Boltzmann Quantum
models eq. Liouville eq.
Macroscopic Fluid mech. (?7)
models eqs. special cases:

Bohmian mech. (1 particle)
perturbative ext.
to many-particle
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2. Review of classical hydrodynamic
theories
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Microscopic vs macroscopic models 6

m Microscopic models: phase-space distribution
function f(z,p,t)

= Boltzmann equation

w Macroscopic models:
density n(z, 1)
mean velocity u(x;t)
temperature 1T'(x, t)
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w Euler eqs of gas dynamics.
Pressure = n’l: perfect gas Equation-of-State

Balance equations (Euler eq.)
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= How to relate macroscopic models to microscopic

(Summary)

eq. ?
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Moment method 8

w n, q = nu, 2W = nlu|* + 3nT are moments of f:

(n ) (1)
q Z/f p dp
\ 2V
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Moment method 9

w Natural 1dea: (1) multiply Boltzmann eq. by
1, p, |p|* and integrate w.r.t. p:

(1

/(atf+p-vzf—VxV-fo—Q(f)) p
\ P> )

g (11) use conservations:

(1)
/Q(f) y
\ [P )
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Moment method (cont) 10

w (111) Get conservation egs

o (! \+Vx-/f/zl9 \pdp— /gnvxv \
\\p\zj \—nu-VxV)

w Problem: Express fluxes in term of the conserved
variables n, g, W

[ fpip; dp (for i # j) and [ flp|? p dp cannot
be expressed in terms of n, q, W.

ot

q
\ 2V

m conservation eqs are not closed
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Entropy minimization (Gibbs, Levermore) 1

w Closure: replace f by a solution of the entropy

minimization problem:

mw Letn, T € R, u € R3 fixed. Find

min{ H ( f /f In f —1)dps.t.

(1)

/f p dp

[ \

nu }

\ n|ul®+3nT" |
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Entropy minimization (cont)

w Entropy minimization problem has solution:

o n p— ul’
Mt = (o pya &P ( T >

m Maxwellian satisfies

(1 [n \
/Mn,u,T

dp = | nu
m Gives the Euler egs. of gas dynamics

p
\ p|? / \ n|ul? + 3nT /

I_evermore closures 1f more moments are retained
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Quantum case

w [dea: use the same 1dea for quantum models.

= Not so simple ...
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3. Quantum setting: basics
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Density operator 15

w Basic object: p: Hermitian, postive, trace-class
operator on L?(RY) s.t.
Trp =1

w Typically:
o =Y pslih, b5) b

sesS

for a complete orthonormal system (¢,)scs and real
numbers (ps)ses such that 0 < p, < 1, > ps = 1
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Quantum Liouville equation

I 2

thdyp = [H, p] + Q(p)
w H = Hamiltonian:

h2
Hy = —?Aw + Viz,t)y

w ()(p) unspecified: accounts for dissipation
mechnisms
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Wigner Transform

w p(x,z’) integral kernel of p:

pY = / p(x, )p(x") do’

w Wlpl|(z, p) Wigner transform of p:

(Summary)

1

W) = [ pla =560 +3
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Inverse Wigner transform (Weyl quantization)s

w Let w(z,p). p = W H(w) is the operator defined
by:

W (w)y = (Qi)d / w(E k) (y)e ) dk dy

w= Weyl symbol of p.

w Isometries between £? (Operators s.t. pp' is
trace-class) and L?(R?):

dx dp
(2mh)?

Te{po'} = / Wipl(z, p)Wo] (. p)
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Wigner equation 19

w Eq. for w = W|p]:
Ow +p- Vw4 0 "V]w = Q(w)

O"Vlw =~ [ (Vi +5n) = Viz = 50)

xw(z,q) e~ dg dn

Il 2 @h[V]w h—>Q VZUV ‘ pr

w ()(w) collision operator (unspecified)
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(Summary)

4. Review of quantum hydrodynamic
theories
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1-particle quantum hydrodynamics 21

w Single state 1)

ihOuh = —%2A¢ + V(x, 1)

Decompose

and define v = V,.S. Then take real and imaginary
parts

om—+V, -nu=>0

L avi—o
> n VT
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1-particle QHD (cont) 22

= Take V of the phase eq.
on—+V, -nu=>0
O+ u - Vou = =V (V 4 Vp)

o1
A
2\/ﬁﬁ

Vg =

Vs = Bohm potential

mw Pressureless Gas dynamics w. additional Bohm
potential term, of order O(h?)
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Many-particle case 23

m Procedure:
Start w. statistical state, 1.e. density operator

Average over the probabilities p,
—> Closure problem

w Closure strategies:
Fourier law for the heat flux [Gardner]

Small temperature [Gasser, Markowich,
Ringhotfer]

Chapman-Enskog expansion [Gardner,
Ringhofer]

Entropy minimization [D. ,Ringhofer]
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5. QHD via entropy minimization
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Moments 25

m Defined as 1n classical mechanics: Moments of the
Wigner distribution

w List of monomials u;(p) e.g. (1,p,|p|*)

p(p) = (1i(p))ico

s w(m)p) — moments m[w] — (mz [w])i\;o

e.g. m=(n,q W)
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Moment method 26

w Take moments of the Wigner equation:
Oym|w] +Vx-/w,updp+/ OV]w pudp = /Q(w) wdp

m Assume conservations
/ Q(w) pdp = 0

m Closure problem: find an expression of the
integrals at the 1.h.s.
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Entropy minimization principle 27

mw Entropy:

Hlp] = Tr{p(lnp—-1)} ; p=W '(w)

w Given a set of moments m = (m;(z))Y,,
minimize H (p) subject to the constraint that

/W (x,p) p(p) dp = m(x) Vx

w Problem: express the moment constraints in terms
of p

(Summary) Pierre Degond - QHD models and entropy - Luminy, july 2003 (Conclusion)



Moments in terms of p 28

w Dualize the constraint: Let A(z) = (\;(z));L, be
an arbitrary (vector) test function

/ w(z,p) p(p)A( CZTZP / m(z Qﬁ)

Tr{p W {u(p r)|} = / m(x 2?;‘1)
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Entropy minimization principle: expression 29

w (G1ven a set of (physically admissible) moments

m = (m;(x))X,, solve

min{ H|p| = Tr{p(lnp — 1)}  subject to:

Tr{p W {u(p /m A 27Th

VA = (Xi(2))isg
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Solution of the entropy problem

w Solution is pg.
pa = exp(W ™ a(z) - u(p)])
o = (ay(2))Y, is determined s.t. m[p,] = m
wa = Wlpa] = Expla(z) - p(p))
Expw = Wlexp(W™ (w))]

(Quantum exponential)

Il 2

30

w Analogy with the classical case M, = exp(a - i)
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Quantum moment models 31

w Take moments of the Wigner eq. and close with
the quantum Maxwellian:

@t/5Xp(Oz-u)udp+Vm-/5xp(a°u)updp

+ / OVI]Exp(a - ) udp =0

w Provides an evolution system for the vector
function a(z, t)
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Entropy 32

1> Klnetlc entrOpy H[IO] 1n terms Of w = W[,O]

dx dp
(2mh)®

Hlp) = Tr{p(n(p~ 1)} = [ w(Lnw-1)

with quantum log: Lnw = W [ln(W 1 (w))]
w Fluid entropy S(m):

dx dp
(2mh)?

S(m) = Hpa] = [ Expla-m((a-m~1)
where avis s.t. [ Exp(a - p)udp = m
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Entropy (cont)

w S(m) convex
Define: »(«), Legendre dual of S

w Inversion of the mapping a — m:

0S D
om Yo'
w Moment models compatible with the entropy

dissipation

for any solution m(t¢) of the QHD equations
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Quantum Hydrodynamics 34

Il 2 IU‘ — {17])’ ‘p’Q}

om—+V, -nu=>0
onu + Vi (nuu + P) = —nV,V
OW 4+ V., - Wu+Pu+Q)=—nu-V,V

w with [P = pressure tensor, (Q = heat flux:
P = /EXP(@ ) (p —w)(p — u)dp

20 = / Exp(a- )lp — ul*(p — w)dp
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Quantum Hydrodynamics (cont)

Il 2 and
a-u=A+ B p+Clpl
S.1.

/5XP(04 - ppdp = (n,nu, W)
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6. Quantum collision operators
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Classical Boltzmann operator 37

Q(w) = /B(]p — p1|, Q) (w'w] — ww )dp; dS

2 2
p+p=p+p,  pHpi=p" +p]

() € S? scattering angle; B scattering cross-section

w Preserves mass, momentum and energy locally
w Kernel = classical maxwellians

= Dissipates classical entropy [ Q(w)lnwdw < 0
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Quantum Boltzmann operator 38

w Requirements:
has the same ’shape’ as the classical one
Preserves mass, momentum and energy locally
Kernel = quantum maxwellians
Dissipate quantum entropy

dx dp
/Q ) Lnw k) = <0
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Quantum Boltzmann operator (cont) 39

Qw) = / B(lp— i, )
(A(w) A(w), — A(w)A(w),)dp; O

where A(w) is the ’conversion operator’:

A(w) = exp Lnw
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Quantum BGK operator

Qw) =M, —w

where

S.L.

(Summary)

M, =Exp(A+B-p+ C\p\z)

/(Mw —w)pudp =0 for u=(1,p,|p|*)
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41

7. Quantum Energy-Transport and
Drift-Diffusion models

Collaboration w. C. Ringhofer and F. Méhats
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Quantum Energy-Transport or Drift-Diffusion?

w Rescaled Wigner equation (¢ < 1)
cOw +p- V,w + @h[v]w =g} (w)
> Q(UJ) — Mw — W Mw — EXP(A —I— C‘p’Q)

/(Mw —w)pdp =0

= (1,|p|*) Energy-Transport
1; C' = —1/2T fixed Drift-Diffusion
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Quantum Energy-Transport (cont) 43

m & — () (diffusion approximation)

w Energy transport:

1
@t/gXP(A—FC’p’Q) (pg) dp

—/T2<9Xp(A+C\p\2) ( : ) dp =0

p|?

with 7w = (p - V, + O"V])w
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Quantum Drift-Diffusion (cont) 44
w Drift-Diffusion:

) / Exp(A—|p[2/2T) dp— / T2Exp(A—|p2/2T) dp = 0

mw QET and QDD are consistent with quantum
entropy dissipation. e.g. ET case:

c‘?ﬁ(n, W) < 0
with (n, W)™ = [ Exp(A + C|p[*)(1, [p|*)"" dp
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h* expansions of QET and QDD 45

w h, — 0 gives classical ET or DD models (diffusion
models)

w (O(h?) corrections to classical DD:
on—Vu - (TVn+nV,(V+Vg))=0
Vs = Bohm potential:
heo1

Vp = A,
B 6 /n

n =70
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O(h?*) corrections to classical DD or ET 46

w O(h?) terms in quantum ET — very complex
model

w QDD up to O(h?) terms is consistent with
quantum entropy dissipation:

w QET up to O(h?) terms is not consistent with
quantum entropy dissipation.
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(Summary)

8. Summary and conclusion

Pierre Degond - QHD models and entropy - Luminy, july 2003

47

(Conclusion)



Summary 48

m Extension of the Levermore’s moment method to
the quantum case

Take local moments of the density operator eq.
Close by a minimizer of the entropy functional

m ]eads to:

Formulation of the entropy minimization
problem as a global problem (local 1n classical
mechanics)

Non-local closure to the Quantum
Hydrodynamics eq.
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Summary (cont) 49

w Quantum collision operators
preserve mass, momentum and energy
consistent w. quantum entropy decay
Boltzmann or BGK type

w Drift-Diffusion or Energy-Transport models

through-diffusion approximation of Quantum
BGK

Justification of Bohm potential in Quantum
Drift-Diffusion

mw Ref: D., Ringhofer, Mehats.
See also [Zubarev et al]: NESOM theory
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Perspectives 50

w Verify entropy minimization problem has a
solution 1n a reasonable sense

w Practical computations of model problems with
QHD model

w F2 corrections to classical mech.
m Small 7" asymptotics

= Normal mode analysis of linearized model

oy
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