Quantum Hydrodynamics models derived from the entropy principle

P. Degond⁽¹⁾, Ch. Ringhofer⁽²⁾

(1) MIP, CNRS and Université Paul Sabatier,
 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr
 http://mip.ups-tlse.fr

(2) Dep. of Math., Arizona State University, Tempe, Arizona 85287-1804, USA

ringhofer@asu.edu

http://math.la.asu.edu/ chris/

Summary

- 1. Introduction
- 2. Review of classical hydrodynamic theories
- 3. Quantum setting: basics
- 4. Review of quantum hydrodynamic theories
- 5. QHD via entropy minimization
- 6. Quantum collision operators
- 7. Quantum Energy-Transport and Drift-Diffusion models
- 8. Summary and conclusion

1. Introduction

Classical

Quantum

Microscopic models

Boltzmann eq.

Quantum Liouville eq.

models

Macroscopic Fluid mech. eqs.

(?)special cases:

Bohmian mech. (1 particle) perturbative ext. to many-particle

2. Review of classical hydrodynamic theories

- Microscopic models: phase-space distribution function f(x, p, t)
- Boltzmann equation

$$\partial_t f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = Q(f)$$

- Macroscopic models:
 - \rightarrow density n(x,t)
 - \rightarrow mean velocity u(x;t)
 - \rightarrow temperature T(x,t)

Balance equations (Euler eq.)

$$\frac{\partial}{\partial t} \begin{pmatrix} n \\ nu \\ n|u|^2 + 3nT \end{pmatrix} + \nabla_x \cdot \begin{pmatrix} nu \\ nuu + nT \operatorname{Id} \\ (n|u|^2 + 5nT)u \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ -n\nabla_x V \\ -nu \cdot \nabla_x V \end{pmatrix}$$

- Euler eqs of gas dynamics. Pressure = nT: perfect gas Equation-of-State
- How to relate macroscopic models to microscopic eq. ?

 $n, q = nu, 2W = n|u|^2 + 3nT$ are moments of f:

$$\begin{pmatrix} n \\ q \\ 2W \end{pmatrix} = \int f \begin{pmatrix} 1 \\ p \\ |p|^2 \end{pmatrix} dp$$

Natural idea: (i) multiply Boltzmann eq. by $1, p, |p|^2$ and integrate w.r.t. p:

$$\int \left(\partial_t f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f - Q(f)\right) \begin{pmatrix} 1 \\ p \\ |p|^2 \end{pmatrix} dp = 0$$

(ii) use conservations:

$$\int Q(f) \begin{pmatrix} 1 \\ p \\ |p|^2 \end{pmatrix} dp = 0$$

(iii) Get conservation eqs

$$\frac{\partial}{\partial t} \begin{pmatrix} n \\ q \\ 2W \end{pmatrix} + \nabla_x \cdot \int f \begin{pmatrix} 1 \\ p \\ |p|^2 \end{pmatrix} p \, dp = \begin{pmatrix} 0 \\ -n\nabla_x V \\ -nu \cdot \nabla_x V \end{pmatrix}$$

- Problem: Express fluxes in term of the conserved variables n, q, W
 - $f = \int f p_i p_j dp$ (for $i \neq j$) and $\int f |p|^2 p dp$ cannot be expressed in terms of n, q, W.
- conservation eqs are not closed

- \blacksquare Closure: replace f by a solution of the entropy minimization problem:
- Let $n, T \in \mathbb{R}_+, u \in \mathbb{R}^3$ fixed. Find

$$\min\{H(f) = \int f(\ln f - 1)dp \text{ s.t.}$$

$$\int f\begin{pmatrix} 1 \\ p \\ |p|^2 \end{pmatrix} dp = \begin{pmatrix} n \\ nu \\ n|u|^2 + 3nT \end{pmatrix}\}$$

Entropy minimization (cont)

Entropy minimization problem has solution:

$$M_{n,u,T} = \frac{n}{(2\pi T)^{3/2}} \exp\left(-\frac{|p-u|^2}{2T}\right)$$

Maxwellian satisfies

$$\int M_{n,u,T} \begin{pmatrix} 1 \\ p \\ |p|^2 \end{pmatrix} dp = \begin{pmatrix} n \\ nu \\ n|u|^2 + 3nT \end{pmatrix}$$

Gives the Euler eqs. of gas dynamics

Levermore closures if more moments are retained

- Idea: use the same idea for quantum models.
- Not so simple ...

3. Quantum setting: basics

Basic object: ρ : Hermitian, postive, trace-class operator on $L^2(\mathbb{R}^d)$ s.t.

$$\text{Tr}\rho = 1$$

Typically:

$$\rho\psi = \sum_{s \in S} \rho_s(\psi, \phi_s) \,\phi_s$$

for a complete orthonormal system $(\phi_s)_{s\in S}$ and real numbers $(\rho_s)_{s\in S}$ such that $0 \leq \rho_s \leq 1$, $\sum \rho_s = 1$

(Summary)

$$i\hbar\partial_t\rho = [\mathcal{H}, \rho] + Q(\rho)$$

 $\mathcal{H} = \text{Hamiltonian}$:

$$\mathcal{H}\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

 $Q(\rho)$ unspecified: accounts for dissipation mechnisms

 $\rho(x, x')$ integral kernel of ρ :

$$\rho\psi = \int \underline{\rho}(x, x')\psi(x') dx'$$

 $W[\rho](x,p)$ Wigner transform of ρ :

$$W[\rho](x,p) = \int \underline{\rho}(x - \frac{1}{2}\xi, x + \frac{1}{2}\xi) e^{i\frac{\xi \cdot p}{\hbar}} d\xi$$

Inverse Wigner transform (Weyl quantization)8

Let w(x, p). $\rho = W^{-1}(w)$ is the operator defined by:

$$W^{-1}(w)\psi = \frac{1}{(2\pi)^d} \int w(\frac{x+y}{2}, \hbar k) \,\psi(y) e^{ik(x-y)} \,dk \,dy$$

w= Weyl symbol of ρ .

Isometries between \mathcal{L}^2 (Operators s.t. $\rho \rho^{\dagger}$ is trace-class) and $L^2(\mathbb{R}^{2d})$:

$$\operatorname{Tr}\{\rho\sigma^{\dagger}\} = \int W[\rho](x,p)\overline{W[\sigma](x,p)} \frac{dx \, dp}{(2\pi\hbar)^d}$$

Eq. for $w = W[\rho]$:

$$\partial_t w + p \cdot \nabla_x w + \Theta^{\hbar}[V]w = Q(w)$$

$$\Theta^{\hbar}[V]w = -\frac{i}{(2\pi)^d\hbar} \int (V(x + \frac{\hbar}{2}\eta) - V(x - \frac{\hbar}{2}\eta)) \times w(x,q) e^{i\eta \cdot (p-q)} dq d\eta$$

- $\Theta^{\hbar}[V]w \xrightarrow{\hbar \to 0} -\nabla_x V \cdot \nabla_p w$
- Q(w) collision operator (unspecified)

4. Review of quantum hydrodynamic theories

 \longrightarrow Single state ψ

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

Decompose

$$\psi = \sqrt{n}e^{iS/\hbar}$$

and define $u = \nabla_x S$. Then take real and imaginary parts

$$\partial_t n + \nabla_x \cdot nu = 0$$

$$\partial_t S + \frac{1}{2} |\nabla S|^2 + V - \frac{\hbar^2}{2} \frac{1}{\sqrt{n}} \Delta \sqrt{n} = 0$$

Take ∇ of the phase eq.

$$\partial_t n + \nabla_x \cdot nu = 0$$

$$\partial_t u + u \cdot \nabla_x u = -\nabla_x (V + V_B)$$

$$V_B = -\frac{\hbar^2}{2} \frac{1}{\sqrt{n}} \Delta \sqrt{n}$$

 V_B = Bohm potential

Pressureless Gas dynamics w. additional Bohm potential term, of order $O(\hbar^2)$

Procedure:

- Start w. statistical state, i.e. density operator
- Average over the probabilities ρ_s \Longrightarrow Closure problem
- Closure strategies:
 - Fourier law for the heat flux [Gardner]
 - Small temperature [Gasser, Markowich, Ringhofer]
 - Chapman-Enskog expansion [Gardner, Ringhofer]
 - Entropy minimization [D. ,Ringhofer]

5. QHD via entropy minimization

- Defined as in classical mechanics: Moments of the Wigner distribution
- List of monomials $\mu_i(p)$ e.g. $(1, p, |p|^2)$

$$\mu(p) = (\mu_i(p))_{i=0}^N$$

 $w(x,p) \rightarrow \text{moments } m[w] = (m_i[w])_{i=0}^N$

$$m_i[w] = \int w(x, p) \,\mu_i(p) \,dp$$

e.g.
$$m = (n, q, W)$$

Take moments of the Wigner equation:

$$\partial_t m[w] + \nabla_x \cdot \int w \,\mu \, p \, dp + \int \Theta[V] w \,\mu \, dp = \int Q(w) \,\mu \, dp$$

Assume conservations

$$\int Q(w) \, \mu \, dp = 0$$

Closure problem: find an expression of the integrals at the l.h.s.

Entropy:

$$H[\rho] = \text{Tr}\{\rho(\ln \rho - 1)\}$$
 ; $\rho = W^{-1}(w)$

Given a set of moments $m = (m_i(x))_{i=0}^N$, minimize $H(\rho)$ subject to the constraint that

$$\int W[\rho](x,p) \mu(p) dp = m(x) \quad \forall x$$

Problem: express the moment constraints in terms of ρ

(Conclusion)

Dualize the constraint: Let $\lambda(x) = (\lambda_i(x))_{i=0}^N$ be an arbitrary (vector) test function

$$\int w(x,p)\,\mu(p)\lambda(x)\,\frac{dx\,dp}{(2\pi\hbar)^d} = \int m(x)\cdot\lambda(x)\,\frac{dx}{(2\pi\hbar)^d}$$

$$\operatorname{Tr}\{\rho W^{-1}[\mu(p)\cdot\lambda(x)]\} = \int m(x)\cdot\lambda(x)\,\frac{dx}{(2\pi\hbar)^d}$$

Entropy minimization principle: expression 29

Given a set of (physically admissible) moments $m = (m_i(x))_{i=0}^N$, solve

$$\min\{H[\rho] = \text{Tr}\{\rho(\ln \rho - 1)\}$$
 subject to:

$$\operatorname{Tr}\{\rho\ W^{-1}[\mu(p)\cdot\lambda(x)]\} = \int m\cdot\lambda\,\frac{dx}{(2\pi\hbar)^d}$$

$$\forall \lambda = (\lambda_i(x))_{i=0}^N \quad \}$$

 \rightarrow Solution is ρ_{α} ,

$$\rho_{\alpha} = \exp(W^{-1}[\alpha(x) \cdot \mu(p)])$$

$$\alpha = (\alpha_i(x))_{i=0}^N$$
 is determined s.t. $m[\rho_\alpha] = m$

$$w_{\alpha} = W[\rho_{\alpha}] = \mathcal{E}xp(\alpha(x) \cdot \mu(p))$$

$$\mathcal{E}xp w = W[\exp(W^{-1}(w))]$$

(Quantum exponential)

Analogy with the classical case $M_{\alpha} = \exp(\alpha \cdot \mu)$

Take moments of the Wigner eq. and close with the quantum Maxwellian:

$$\partial_t \int \mathcal{E} x \mathbf{p}(\alpha \cdot \mu) \, \mu \, dp + \nabla_x \cdot \int \mathcal{E} x \mathbf{p}(\alpha \cdot \mu) \, \mu \, p \, dp$$
$$+ \int \Theta[V] \mathcal{E} x \mathbf{p}(\alpha \cdot \mu) \, \mu \, dp = 0$$

Provides an evolution system for the vector function $\alpha(x,t)$

Kinetic entropy $H[\rho]$ in terms of $w = W[\rho]$:

$$H[\rho] = \operatorname{Tr}\{\rho(\ln(\rho - 1))\} = \int w(\mathcal{L} \mathbf{n} \, w - 1) \frac{dx \, dp}{(2\pi\hbar)^d}$$

with quantum log: $\operatorname{Ln} w = W[\ln(W^{-1}(w))]$

Fluid entropy S(m):

$$S(m) = H[\rho_{\alpha}] = \int \mathcal{E} \mathbf{x} \mathbf{p}(\alpha \cdot \mu) ((\alpha \cdot \mu) - 1) \frac{dx \, dp}{(2\pi\hbar)^d}$$

where α is s.t. $\int \mathcal{E} xp(\alpha \cdot \mu) \mu dp = m$

- S(m) convex Define: $\Sigma(\alpha)$, Legendre dual of S
- Inversion of the mapping $\alpha \to m$:

$$\frac{\delta S}{\delta m} = \alpha \,, \quad \frac{\delta \Sigma}{\delta \alpha} = m$$

Moment models compatible with the entropy dissipation

$$\partial_t S(m(t)) \le 0$$

for any solution m(t) of the QHD equations

$$\mu = \{1, p, |p|^2\}$$

$$\partial_t n + \nabla_x \cdot nu = 0$$

$$\partial_t nu + \nabla_x (nuu + \mathbb{P}) = -n\nabla_x V$$

$$\partial_t W + \nabla_x \cdot (Wu + \mathbb{P}u + \mathbb{Q}) = -nu \cdot \nabla_x V$$

with \mathbb{P} = pressure tensor, \mathbb{Q} = heat flux:

$$\mathbb{P} = \int \mathcal{E} x \mathbf{p}(\alpha \cdot \mu)(p - u)(p - u)dp$$

$$2\mathbb{Q} = \int \mathcal{E} x \mathbf{p}(\alpha \cdot \mu)|p - u|^2(p - u)dp$$

■ and

$$\alpha \cdot \mu = A + B \cdot p + C|p|^2$$

s.t.

$$\int \mathcal{E} \mathbf{x} \mathbf{p}(\alpha \cdot \mu) \mu dp = (n, nu, W)^{Tr}$$

6. Quantum collision operators

$$Q(w) = \int B(|p-p_1|, \Omega)(w'w'_1 - ww_1)dp_1 d\Omega$$

$$p + p_1 = p' + p'_1$$
 $p^2 + p_1^2 = p'^2 + p'_1^2$

 $\Omega \in \mathbb{S}^2$ scattering angle; B scattering cross-section

- Preserves mass, momentum and energy locally
- \rightarrow Kernel \equiv classical maxwellians
- Dissipates classical entropy $\int Q(w) \ln w \, dw \leq 0$

Requirements:

- has the same 'shape' as the classical one
- Preserves mass, momentum and energy locally
- \rightarrow Kernel \equiv quantum maxwellians
- Dissipate quantum entropy

$$\int Q(w) \, \mathcal{L} \mathbf{n} \, w \, \frac{dx \, dp}{(2\pi\hbar)^d} \le 0$$

$$Q(w) = \int B(|p - p_1|, \Omega)$$

$$(A(w)'A(w)'_1 - A(w)A(w)_1)dp_1 d\Omega$$

where A(w) is the 'conversion operator':

$$A(w) = \exp \mathcal{L} \mathbf{n} \, w$$

$$Q(w) = M_w - w$$

where

$$M_w = \mathcal{E}xp(A + B \cdot p + C|p|^2)$$

s.t.

$$\int (M_w - w)\mu \, dp = 0 \quad \text{ for } \mu = (1, p, |p|^2)$$

7. Quantum Energy-Transport and Drift-Diffusion models

Collaboration w. C. Ringhofer and F. Méhats

Quantum Energy-Transport or Drift-Diffusion2

Rescaled Wigner equation ($\varepsilon \ll 1$)

$$\varepsilon \partial_t w + p \cdot \nabla_x w + \Theta^{\hbar}[V]w = \varepsilon^{-1}Q(w)$$

$$Q(w) = M_w - w \qquad M_w = \mathcal{E}xp(A + C|p|^2)$$

$$\int (M_w - w)\mu \, dp = 0$$

- $\mu = (1, |p|^2)$ Energy-Transport
- $\mu = 1; C = -1/2T$ fixed Drift-Diffusion

- $\varepsilon \to 0$ (diffusion approximation)
- Energy transport:

$$\partial_t \int \mathcal{E} x p(A + C|p|^2) \begin{pmatrix} 1 \\ |p|^2 \end{pmatrix} dp$$
$$- \int \mathcal{T}^2 \mathcal{E} x p(A + C|p|^2) \begin{pmatrix} 1 \\ |p|^2 \end{pmatrix} dp = 0$$

with
$$\mathcal{T}w = (p \cdot \nabla_x + \Theta^{\hbar}[V])w$$

Drift-Diffusion:

$$\partial_t \int \mathcal{E} x \mathbf{p}(A - |p|^2 / 2T) \, dp - \int \mathcal{T}^2 \mathcal{E} x \mathbf{p}(A - |p|^2 / 2T) \, dp = 0$$

QET and QDD are consistent with quantum entropy dissipation. e.g. ET case:

$$\partial_t S(n, W) \leq 0$$

with
$$(n, W)^{Tr} = \int \mathcal{E} x p(A + C|p|^2) (1, |p|^2)^{Tr} dp$$

- $\hbar \to 0$ gives classical ET or DD models (diffusion models)
- $O(\hbar^2)$ corrections to classical DD:

$$\partial_t n - \nabla_x \cdot (T\nabla_x n + n\nabla_x (V + V_B)) = 0$$

 $V_B =$ Bohm potential:

$$V_B = -\frac{\hbar^2}{6} \frac{1}{\sqrt{n}} \Delta_x \sqrt{n} = 0$$

- $O(\hbar^2)$ terms in quantum ET \rightarrow very complex model
- QDD up to $O(\hbar^2)$ terms is consistent with quantum entropy dissipation:

$$\partial_t \tilde{S}(n) \leq 0$$

QET up to $O(\hbar^2)$ terms is not consistent with quantum entropy dissipation.

(Summary)

8. Summary and conclusion

Summary

- Extension of the Levermore's moment method to the quantum case
 - Take local moments of the density operator eq.
 - Close by a minimizer of the entropy functional
- leads to:
 - Formulation of the entropy minimization problem as a global problem (local in classical mechanics)
 - Non-local closure to the Quantum Hydrodynamics eq.

Summary (cont)

- Quantum collision operators
 - preserve mass, momentum and energy
 - consistent w. quantum entropy decay
 - Boltzmann or BGK type
- Drift-Diffusion or Energy-Transport models
 - through-diffusion approximation of Quantum BGK
 - Justification of Bohm potential in Quantum Drift-Diffusion
- Ref: D., Ringhofer, Mehats.
 See also [Zubarev et al]: NESOM theory

- Verify entropy minimization problem has a solution in a reasonable sense
- Practical computations of model problems with QHD model
- \hbar^2 corrections to classical mech.
- \longrightarrow Small T asymptotics
- Normal mode analysis of linearized model

. . .

(Summary)