4 N

Nonlinear approximation and adaptive multiscale methods for PDE’s

Albert Cohen
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie

Paris

www.ann.jussieu.fr/~“cohen

CEMRACS 2003




4 N

Adaptive methods in numerical computation

Multiscale : the discretization is locally refined in the area where
the physical process involves fine scales, such as shocks,
singularities, high gradients, fast oscillations...

Nonlinear : the local refinement is not fixed a-priori but rather
driven by information gained through the computation process.

Theoretical pillar : nonlinear approximation theory.

Numerical tool : wavelet bases.
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Agenda

1. Nonlinear approximation and wavelet : basics.
2. Nonlinear approximation and wavelet : advanced.
3. Adaptive space refinement schemes

4. Adaptive postprocessing schemes

.
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\ Basic notations /

- Lebesgue spaces: LP(Q) :={f; [,|f[? < oo} for p > 1. Banach
space when equiped with the norm || f||, := [ [, | f[F]'/?.

- L>°(Q2) (almost everywhere uniformly bounded functions) and
C'(?) (continuous functions): Banach spaces when equiped with the

norm || f|foe := sup,eq |f()].

- Hilbert space in the case p = 2: || f|l2 = [(f, f)]'/? with
(f,9) = %D /g

- Characteristic functions: Xq(x) =1 if z € 0, 0 otherwise.

- Change of variable: f(a-+b):z +— f(ax + ).

- Estimations: F'(p1,p2,---) < G(p1,p2,---) if there exists C > 0
such that MA@HU@MQ o v < QQQQH;wwu o v for all P1,P1," " -

- Equivalences: ' ~ G if and only if ' < G and G < F.
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\ Fourier representations /

- Analysis: f(w) = [T f(t)e~“dt.

— o0

- Synthesis: f(t) = (2n)~1 [T f(w)e™tdw.

—00
Representation of f in terms of the pure waves e, (t) = ¢!, w € R.

For 1-periodic functions:

- Analysis: ¢,(f) = \% f(t)e 2™,

- Synthesis: f(t) =Y, cp cn(f)e*™.

Discrete Fourier transform: (z[k|)x—=o.... n—1 and (

>
Rt
N——"
il
\’O
|
—

connected by

N-1
1 :
Mﬂs = &T&mlswﬁ:w\z and .Rﬁ swﬁ:w\z.
v 2 M
@bw_mgmama in O(N log N) operations by FFT. K
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\ Fourier representations and computation /

Approximation of a (1-periodic) function by its partial sum
N o

MZNANV — MU3H|2 QﬁAA\uvmwsM 3&..

Problem: fast convergence 7

If f,f, -, f™ are continuous over IR, we can apply n times the
integration by part to obtain

()] = |(i27m) " Len(f)]
= - [(i2mn) e, (F))
< [i2mn| =™ [y [£0)] < 0o

= Fast decay if f is smooth.

However, if f is smooth everywhere except at some discontinuity
point z € [0, 1], we cannot hope better than |c,(f)] < n~' (also
Gibbs phenomenon for Sy f near the singularity).

@mﬁha representations are needed for such functions. K
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\ Central problems in approximation theory /
- X normed space.

- (XN )~n>0 C X approximation subspaces (g € X described by N
or O(N) parameters).

- Best approximation error on(f) :=infex, || f — 9/l x-

Problem 1: characterise those functions in f € X having a certain

rate of approximation

feX o on(f)<CNT

Problem 2: practical realization of f — g € X such that
If —9gllx < on(f)

Applications to numerical simulation : in this setting f is not

explicitely given but is the unknown of an equation (e.g. PDE)

/ﬁ:v = 0. \




4 N

Examples
Linear approximation : Xy space of dimension O(N)

- Xy := Il polynomials of degree NN in dimension 1

-Yn={feC"([0,1]); \_ LISy cll,,, k=0,- N — 1} with
0 <r < m fixed, splines /Sﬁp zEmoH.B knots.

- XN := Vect(eq, -+ ,en) with (ex)r>0 a functional basis.
Nonlinear approximation : Yy + Xn # XN
- YN = ,Tt p,q € I} rational fractions

- XN = A\H < Q%QO“ :v ; N:H?&fri cll,,, 0=z < ---<any = Hw
with 0 < r < m fixed, free knots splines.

- XN = {2 aerdan; #(E) < Nj set of all N-terms combination
of a basis () ).
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\ A basic example /

Approximation of f € C(|0, 1]) by piecewise constant functions on a
partition Iy, --- , Iy, defining

fn(@) = L)~ | f, si z€lL
Iy

Linear case: I = [+ uniform partition.

N ?

['eL® e |f — fullie <CNT' (C =sup|f)).

k kg
N

Nonlinear case: I}, free partition. If f/ € L', choose the partition
such that [, || =N~1 [} |f.

1
Pl e |f— falle < N7 an\ ).
0

@@@5&5@305 rate governed by differents smoothness spaces ! K
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\ Multiscale approximation : basic 1D example /

Approximation of a function f(¢), t € |0, 1] by piecewise constant
functions on dyadic intervals I, = [277k,277(k 4+ 1)],
k=0,---,20 —1,

N&MQV = a5k = 2 \Aﬂv&ﬁ L€ Nu.uw.

Ik

Remark 1: P; is the L*-orthogonal projection onto the space V; of
piecewise constant functions on the intervals I, k=0,---,27 — 1.
Indeed an orthonormal basis for this space is provided by

Pik = MQ\MX?% — Mw\wﬁAMw ) |\Avu k= OQ e uwu. - Hu

with ¢ = X[o,1] and clearly P;f = Muwgnlo;.\w ©ik)Pj k-
Remark 2: the spaces V; are nested i.e. V; C V41 and

/cS: = LP((0,1]), i.e. limj—yoo [[f = Py fll, = 01if f € LP([0, 5.\

11



-

-

Multiscale decomposition into the Haar basis

ceee=<f, 050 + WWAm,ﬁ,wvﬁ.,w

1

f=<f,0>0

+<f, U0

+ < H.‘_._“ovr_.“o +< H»EHVF_.“H

We decompose P;f into P;f = Pyf + MU,W.WQH (), [ with

(); = Pj41 — P; the orthogonal projection onto W, the orthogonal
complement of V; into V;41.

W, is spanned by 1 = 29/2(27 - —k), k= 0,---,27 — 1, where

¥ = Xjo.1/21 — Xf1/2.1]- Therefore Q;f = 37 o (f,¥j 1))k Letting
J — 400, we obtain the decomposition of f in the Haar system

-1

~
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\ Fast algorithms /

Starting point: discretized function at some resolution level J, i.e.
27 -1

f=2 0 CikPik €V,

Two possible situations: (i) data are directly provided in discrete

format cy := (cjk)r=0,... 27—1 (e.g. in digital signal or image

processing) or (ii) data is a function f with an explicit

mathematical expression = compute cj = (f, psx) exactly or
approximately.

Problem: fast computation of the coefficients in the multiscale
: _ i_
representation f := cgop + MU,%HOH c .

Solution: process hierarchically, using the interscale relations

Ci—1k = M|G|C\w§.|§a — wLTSE?@.b» + ajopr1)/2

= (¢j2k + ¢j2k41)/ V2,

Kpsm similarly d;_1 x = (¢ .21 — @.bfﬁv\/ﬁ. \
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This allows the iteration

c;— (cj_1,dj_1) — -+ — (co,do,d1, -+ ,dj_1).
I ] Onu
! | L€y, dyy
| _ . | Cy g dy,d;y
— | - Cyg dyg3d;od;

Reconstruction: by inverse formulae

Cjak = (j—1k + dj—1,k)/V2 and cjopir = (cj1k — dj—1k)/V2.

Remark: complexity of step j <+ 7 — 1 in O(2’) = global
complexity in O(27), i.e. O(NN) where N is the size of the data.

- /
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Compact notations

- Scaling functions and wavelets: @, = @, Vi = ¥x, A= (J,k).
- Scale level: |A| = J.
- Coefficients: cx = (f, ©a), dx = (f, V).

- Projectors: P;f = Mu_y_nu. CAPN = MU_\/_A.Q. dxy (incorporates the
coarse layer of functions ¢y, |A| =0) and Q;f = >_y—; daix.

- /
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\ Wavelet analysis of local smoothness

- If f is bounded on I, an obvious estimate is

d; ] = |, )| < sup |F(0) \ ial = 2797 sup 1£(0)].

tel; i
-If fis C' on I, a finer estimate is

dj k] =inf g [{(f — ¢ ¥k)l
<inf g If = cllooe ;0 15kl L
< 2739/2 sup;ey, , |f/(8)].

- If f is Holder continuous of exponent v on I; i, i.e.
1f(x) — f(y)| < Clz — yl|*, for some a €]0, 1|, we have the
intermediate estimate |d; | < C277(a+1/2),

/Umo@u\ of wavelet coefficients influenced by local smoothness.
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\ Approximating functions by wavelet bases /

- Linear approximation at resolution level j by taking the truncated

- Nonlinear (adaptive) approximation obtained by thresholding

feTof =) dapn, A=An) ={X st. |dr| >n}.
AEA

1
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Hierarchical structure of visual information /
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Multiscale decomposition

0+O+O+©+O

Fine scale image representer by coarse scale approximation 4+

fluctuations at intermediate scales

N /
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- V;: piecewise constant on dyadic squares S; = Ij g, X I, -

Decomposition of 2D images

- Orthogonal complement spanned by the functions
N@A&U@v HM%@J\AMQAMHJ“Qvl\&Vv \V\H@u@uﬁu

for k = (ksz, k) € {0,---,27 —1}2, where ¥%(z,y) = p(x)(y),
W (z,y) = (x)p(y) and Y°(z,y) = P(x)P(y).

Tensor product algorithm:

~

a
Ou -1 QuL

C J - -
QuL QuL

Image I(k,l) = process lines = process columns = Iterate ...

21



\ Thresholding applied to an image /

Decomposition and reconstruction with 4096 largest coefficients.

Sparse representations (significant coefficients concentrated near
the edges) = adaptive approximation by thresholding. Results in

important applications in image processing (compression,

/Qmsowm:pmv : K
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Summary

Important features of the Haar system:

- Multiresolution nested approximation spaces V;

- Local bases 1\ spanning the complement spaces W
- Fast O(N) algorithms

- Decay influenced by local smoothness

- Adaptive approximation by thresholding

Limitations: discontinuous basis functions with poor approximation

properties.

- /
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Remarks:

ﬁmg, piecewise constant functions we had ¢ = X/g 1.

A general framework

Mallat and Meyer (1986): a multiresolution approximation (MRA)
is a sequence of nested spaces V; C V; 41 C --- of L*(IR), such that:

- UV = L2 ie. limj 4o ||f — P fll2 =0 for all f € L? where P; is
the L?-orthogonal projector.

- There exists a scaling function ¢ € V|, such that

i k(t) = mimﬁ@i — k), ke,

constitute a Riesz basis of V; (Riesz basis in Hilbert spaces: basis
(en) such that |[(z,)|lez ~ || D xnen|m)-

- We now work on the whole of IR therefore k& runs over 7Z.

~

/
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\ Accuracy of MRA spaces /

Rate of convergence of ||f — P;f|| as j — 400 7

For piecewise constant functions,

If = Pifllp < 27711F 1lp.

but cannot hope for a better rate such as 27™7 || f(™)||,,: piecewise
constant approximation is first order accurate.

Raising the accuracy and smoothness: V; space of piecewise affine
functions on the I;; which are globally C°. Natural generator: hat
function p = (1 — |x|)+.

More generally: splines of degree NV, i.e. piecewise polynomials of
degree N on the I, which are globally CV~1:

Generator: B-spline of degree N

o(x) = X011 * - * Xjo,1] = A*V2+HXB£.

- /
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New difficulties

Remark: except for N = 0, the functions ¢, , are not orthogonal.

In turn the orthogonal projector P; is not local.

Two basic questions:
- How to define numerically simple projectors P; onto V; 7

- How to construct wavelet bases which characterize the difference

between two successive levels of projection 7

Several approaches (by order of generality): orthogonal wavelets,
biorthogonal wavelets, generalized wavelets.

- /
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A fundamental remark
Scaling function ¢ € Vj C V; should satisfy a two scale equation

ﬁ@ — MU DBSAMN - 3v

ne

- Expresses that V; C V;11 since by change of variable we obtain
ik — w Muzmmm D:ﬁirwi:.
- Example: ¢ = X0,11 = X[0,1/2] + X[1/2,1] = p(2-) + (2 1), ie.
ho = h1 =1, h,, = 0 otherwise.

- B-splines of order N: h,, = wlZ:_Am@/\._.._.mlv_:v_ forn=20,---,N+1,

and h,, = 0 otherwise.

- Support of ¢ and discrete support of (h,,) have same length.

- /
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Example: quadratic B-spline

o.m T T T T T
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p(x) = 1(p(2z — 1) + (27 — 2)) + ;(¢(27) + ¢(2z — 3))

- /
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\ Orthonormal wavelets /

Assuming that ¢ is such that the (¢, r)rez are an orthonormal
basis so that P;f = >, . (f, ©jx)¥jk, one builds the wavelet ) by

ﬂw@v — M QSGAMN - Sv

with g, = (—1)"hi1_,. Then (¢, x)rez are an orthonormal basis of
the orthogonal complement W; of V; into V;1; so that

Qif = (Piy1 = P))f =) {f. i)t

keZ

We thus can decompose f in the orthonormal basis of L?(IR)

[ =PFf+ MUQ.NO Q;f
— MumeCﬁ ﬁovwvﬁo“w + MU,Q.NO MumeQw %&wv%&w.

- /
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Constructing orthonormal scaling functions
Idea: define ¢ implicitely as a solution of the two scale equation.

Problem: design coefficients h,, such that ¢ has prescribed
properties, e.g orthnormality., compact support, smoothness, high

order approximation properties of the corresponding V; spaces.
Orthonormality : > hphpyqor =2 if £ =0, 0 otherwise.
Order N: > hp,=2cet > (=1)"n"h, =0, m=0,---,N.

The construction of Daubechies (1988): for each N > 0, a sequence
(hy,) supported on {0,--- ;2N — 1}, such that solution @y
compactly supported in [0,2N — 1] has orthonormal translates, and
resulting V; spaces have approximation order N. Also ¢ € Cs(N)
with s(N) ~ N/5 as N — co. Except ¢1 = X[o,1], no explicit

expression.

- /
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(smoothness s(2) ~ 0.55).

1.4

Example
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Orthonormal scaling function and wavelet in the case N = 2
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\ Biorthogonal wavelets /

Idea: replace orthogonality assumption by a dual scaling function
p = MU:mN hn,®(2 - —n) such that

(i, p50) =11 k=1 0 otherwise.

- Non-orthogonal projector P;f = > . cou(fs Pjk)Pj k-

- Dual wavelets ¢ =} gn(2- —n) and ) = D nem InP(2 - —n),
with g,, = Albzwﬁlz and g, = (—1)"h1_p.

~ Satisty (5, 0;) =1 if k=1, 0 otherwise and
Ambu.“\f@bu.kv — Ammu.u\f@u.kv = 0.

- Projector Q;f = (Pjt1 — P)f = 2pen'f; ) .k) W5k ONto
non-orthogonal complement W; = V; 1 N SF

Results in a decomposition of f in a biorthogonal basis of L?(IR)

fro=PRf+2,50Qf
/ = S rem s ook + Xm0 Swez (s Vi) ik Y

32




-

A b N B O kB N W S O O
.
— —

i

1.6

14+
12+

1L
0.8 -
0.6
04
0.2t

0

-0.2
-0.4
-0.6

Constructing dual scaling functions

equation with proper design of the coefficients h,, and hy,.

Duality: ) w:w:Lﬁww =2 if k=0, 0 otherwise.

equations (not unique). In particular, one can obtain dual

Similar approach as in the orthogonal case: use the refinement

©, and look for coeflicients h,, solutions of the resulting linear

More flexible: one can prescribe the h,, and therefore the function

functions for the B-splines of degree N. Example: @, v and 1) for
linear splines (N = 1) with hg = 3/4, h4q = 1/4 and hyo = —1/8.
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\ The fast wavelet transform algorithm

Connect standard and multiscale representations

J—1
f= MU CILEPTk = MU C0,k$0,k + MU MU dj ki k

kEZ ke j=0 keZ
by the same hierarchical procedure as for the Haar system.
Basic step ¢j+1 < (c¢j,d;) in the biorthogonal case:
Decomposition: use dual two scale equation
Cjk = Cﬁ ﬁ&wv — Cﬁ w MUsmN m:ﬁu._.fww._.:v
= =Y ez hnCji1 2k in = 75 Lonez N2k Cjt1 -
and similarly for d; ;. Therefore

ne neX

-

1 ~ 1 .
Cjk — H MU D:&w@.i% and g@.vw — /m MU In—2kCj+1,n-

~
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\W@oosmi:oio? use primal scale equation /

Pitrf =2 pem Cir1hPitLk
= MU:mN CjnPin T MU:mN djnjn
= 2 nez &“iw 2 ke Mh—2nPj+1,k]
+> ez &ﬁiw D kew Ik—2nPj+1,k]
= D kez 752 nem Cinhi-2n + 3 ez djnTh—2n]P )41k

By identification of the coordinates in the first and last expression,

we obtain

1 1
Cij+1,k — N MU @.S?T? + m MU &3?&7@:.

ne =y/4

~

Remark: these algorithms only use the coefficients (hy,,, by, gny Gn),

~

/bod the functions (¢, ¥, @, ). \
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Signal processing interpretation

Two channel filter bank (low pass and high pass).

OTExDA VD NO_+H._A
oo 2y 2

* Op

Remark: In practice, discretized data have finite support
c; = (¢jk)k=0.... 271 = adaptation of the filtering process is

needed near the boundary.

Simplest solutions: extension by periodization or symmetrization of

the signal, or boundary adapted MRA and wavelets.

- /
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Toward generalized wavelets

Problem: adaptation of MRA and wavelets to general domains
Qe RY, possibly with boundary conditions. Tensor product

strategies are not sufficient.

First approach (Canuto, Tabacco, Urban, Dahmen, Schneider):
export the tensor product strategy through domain decomposition :
Q) partitioned into conforming parametric patches ; = r;([0, 1]%).
From tensor product wavelets in reference domain, define wavelets
inside each patches as 15 (-) := ¥ (k; '-). At the interfaces, define
wavelets by proper “glueing” of functions from both side ensuring

at least continuity.

- /
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\ Second approach: hierarchical finite elements

freedom I'; are nested).

-

Start from nested triangulations 7; derived from a coarse
triangulation 7, of €2 by iterative mi-point refinement.

A4 4

Define associated finite element spaces V;. Not always nested but
nestedness holds e.g. for P,, Lagrange elements (nodal degrees of

Nodal basis (¢~ )~er, and interpolation projector

Pif =Y (e

veL;

~

38
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Finite element wavelets

Hierarchical basis: Pj41f — P;f vanishes on I'; = can be expressed
as MU\/mﬂ. dxx, where V; =T';4; \ I'; and 9, is the nodal function
@x of V;q1. This leads to the hierarchical basis decomposition of
JeV;

J—1
\H M @?bQuTM M &yﬁy.

veT =0 \EV,

Drawback: intrinsic lack of L? stability due to the use of the
interpolation projector.

Solution: finite element wavelets built by local correction of the 1y,
A € V;, with combinations of the functions (¢~ ) er,,, localized
around the support of ¥, (Oswald, Lorentz, Dahmen, Stevenson).

- /
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Linear approximation results

- V},: finite element space discretizing a domain Q ¢ R?.
- N :=dim(V},) ~ vol(Q)h ™4
- WP .={f e LP(Q) st. DYf € LP(Q), |a| < s}

Classical finite element approximation theory (Bramble-Hilbert,

Ciarlet-Raviart, Strang-Fix): provides with the classical estimate

FeWwsttP = inf ||f — g|lwer < Cht ~ CN/4,
9EVh

assuming that 1V}, has enough polynomial reproduction and is
contained in W

-
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\ Wayvelet characterizations of functions spaces /

Let f =Y daox, dx = (f,92),
- L? characterized by [[f3 ~ [|P0f[13 + ;20 10, £ ~ 31l
- Sobolev space H® = W*? characterized by

1F1%e ~ P fI3+ D 227 1Qs fIIE ~ D 2P daf® ~ ) ldawoallFre

=0
- Besov-Sobolev space Bj , characterized by

1S~ NP + 2250 27 1Q5 FII ~ > 2psIM[daepy |8
~ 30 2psIMpd(1/2=1/P)M | gy [P s ST ldxvalls, -

Remark: B; , = WP if s¢ Nor p=2and B, = C*if s ¢ IN.

/

All this holds provided that 1), has enough smoothness

N
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\ Measuring sparsity in a representation f = ) fiya /

Intuition: the number of coefficients above a threshold 7 should not
grow too fast as n — 0.

Weak spaces: (fy) € wfP if and only if
Card{A s.t. |fa| >n} < Cn7P,

or equivalently, the decreasing rearrangement (f*),~o of (|fr])
satisfies

fr<conlr,

The representation is sparser as p — 0. If p < 2 and () is an

orthonormal basis, an equivalent statement is in terms of best

N-term approximation: if fy := > largest | f| JAYA, then

If=fnllee =) P2 S NT5, 1p=s+1/2

n>N

- /
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\ Nonlinear approximation results /

N-terms approximations: Xy 1= {> ,cp dxt¥r ; #(A) < N}
- Rate of decay governed by weaker smoothness conditions

(DeVore): with 1/g=1/p+1t/d

feBstt = f [|f—gllwr <CNYE
’ geEX N

- For most error norm X (e.g. LP, W*P?, B} ), a near optimal
approximation is obtained by thresholding : if f =), dy®, and

N =2 xn largest [|dx s || x d 1y, we then have

If = fyllx <C inf ||f —gllx

gEXN
with C independent of f and V.

- Remark: a similar theory for piecewise polynomial approximation
@ N adaptive triangles is still to be completed. K
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Pictorial interpretation of approximation results

Embedding x\a_ ope d)
C mmn%8 inX o
No embedding
in X
el - o(Ntd)
Nonlinear
ST X : measurement of the error
(sderivativesin LP)
Up 1/g=Lp+/d LP spaces
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Modeling real images by functions of bounded variation
I € BV if and only if I € L! and VI is a finite measure
Prototype: Xq where 02 has finite length.

Intuition: Images are “piecewise smooth” and their singularities
(edges) have finite total length.

Theorem (1998):f € BV ([0,1]?) = (dy) € wl! i.e. d, < C/n.

- BV is “almost characterized” since (dy) € ¢* = f € BV([0,1]?).
- Optimal estimate for wavelets: if f = Xq then d,, > ¢/n.
- Optimal estimate among all bases

-
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\ Sparse representations and geometry

Image: I = Xq, with 92 smooth.

Iy = approximation by N largest
wavelet coefficients
= || — Inl||p2 ~ N~1/2

Problem: imposes isotropic refinement

I = piecewise constant approximation
on N optimally selected triangles
= :N|N2:hw ~ N1

Problem: fast hierarchical algorithm 7

~

/
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Other recent approaches for sparse representation of geometry

- Donoho and Candes: sparse representation based on
ridglets/curvelets bases (similar to wavelets with additional
directional selectivity). Allows to recover ||[I — In||z2 ~ N~ with a
thresholding algorithm.

- Mallat: sparse representation based on bandlets (selection of a
basis adapted to the edges of the image).

- Arandiga, Donat, A.C.: sparse representation based on nonlinear
multiscale decompositions (uses shock capturing techniques
introduced by Harten and Osher).

- /
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\ Revisiting regularity theory for PDE’s
Solutions of certain PDE’s might have substantially higher

regularity in the scale governing nonlinear approximation than in
the scale governing linear approximation.

Example: 1D nonlinear conservation law
Ou~+ 0. F(u) =0, wu(z,0) =wup(x),

with F' smooth and strictly convex (e.g. Burger F'(u) = u?/2).

- Smoothness for linear approximation in L!: for large ¢,
u(+,t) € BV but not smoother.

- Smoothness for nonlinear approximation (DeVore & Lucier,
1987): for all s > 0 and 1/p=1+s, if ug € B, , then u(-,t) € B;
for all £ > 0.

Similar results are available for elliptic PDE’s on corner domains

/AUm/\oH@ & Dahlke)

~

P

/
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\ Pictorial interpretation

1 1/p

Classical theory : s < 1/p for s <1
DeVore-Lucier : s <1/p—1 for all s >0
/gﬁ@%o_mﬁos s <1/pforall s >0
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Use of adaptive wavelet methods for discretizing PDE’s 7

Benchmark for adaptive methods : an optimal adaptive strategy
should produce approximate solutions uy € ¥y such that ||u —uy||
behaves asymptotically as good as inf,cx,, ||u — v||, for some norm
| - || of interest, without the full knowledge of the largest wavelet
coefficients of u, and with O(/N) computational cost.

First approach: space refinement techniques to access the
appropriate discretization {1 }aeca, (Bertoluzza, Perrier, Liandrat,
Dahlke, Canuto, Stevenson, Urban, Masson, Dahmen, DeVore,

AC). In the case of stationary problems

enjoying a suitable variational formulation, this approach has led to

optimal strategies in the above sense.

- /
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This approach might be difficult to operate for certain types of
problems for which certain discretization are doomed to fail.

Second approach: Multiresolution Adaptive Post-processing, i.e.
start from a classical and reliable scheme on a uniform grid and use
a discrete multiresolution decomposition in order to compress
computational time and memory size, while preserving the
accuracy of the initial scheme (Harten, Abgrall, Arandiga,
Chiavassa, Donat, Dahmen, Mueller, Gottschlich-Mueller, Kaber,
Postel, AC). Typically applied to evolution problems

@w@ = M\.AQV“

with good practical results, but uncomplete convergence analysis.

N /
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H Hilbert space, F : H — H’ continuous mapping, u nonsingular
solution of F(u) = 0, i.e. DF(u) is an isomorphism from H to H’'.

General variational problems

Variational formulation : find © € 'H such that
(F(u),v) =0
for all v € H.
Simple linear examples: F(u) = Au — f
- Laplace: A := —A and H := H}
- Stokes: A(u,p) := (—Au+ Vp,—Divu) and ‘H := (Hj)> x L3.
- Single layer potential Au(z) := [, 3 W) gy and H = H-L/2.

dmlz—y|
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\ Standard (FEM) approach to discretisation /
1. Well posed problem in infinite dimension F(u) = 0.

2. Finite dimensional discretization H — V}, by a Petrov-Galerkin
type method ((F(up),vr) = 0 for all v, € Wy,).

Difficulties: not always well-posed (compatibility conditions, e.g.
. Div
LBB for Stokes : inf,, cp, Sup,, ¢y, __@M _N_umm__yzh_:mp > Br > 0).

3. Tterative solver u) — uj -+ — up,.

Difficulties: ill-conditionning and dense matrices

4. Adaptivity: derive local error indicators by a-posteriori analysis
of residual F(uy), and apply local mesh refinement based on these

indicators V;, = V¥ - V! — ... uy =u) — ul — -

Difficulties: hanging nodes, convergence analysis of such refinement

/mi@d@mwmm (Dorfler 1996, Morin-Nocetto-Siebert 2000). K
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\ Wayvelet adaptive discretizations: new paradigm

1. Well posed problem in infinite dimension F(u) = 0.

2. Equivalent discrete problem in infinite dimension by
wavelet-Galerkin: find U = (uy)xev such that

FU) = (F(S urthn), ) s = 0.

Well-posed : F : £? — (2 if (1) rev is a Riesz basis for H after

renormalization, i.e. ||ul3, ~ Y |uxl? and |[ull5, ~ > |[{u, ¥a)|?.

4. Adaptive approximation of this iteration up to prescribed
tolerances in finite dimension: U™ supported by finite wavelet set

A, C V.

= allows to establish optimal accuracy and complexity results in

@a energy ||ul|s ~ ||U]| norm.

3. Converging iteration in infinite dimension U° — U! — ... — U.

/
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\ The linear elliptic case /

Assume A is an H-elliptic operator. Equivalent problem :
AU = F
where A is ¢?-elliptic. For a suitable s the iteration,
Ut = U™ + k[F — AU",
converges with fixed error reduction rate p < 1.

Approximate iteration with prescribed tolerance € > 0,
U™t = U™ 4+ k|[APPROX(F,¢) — APPROX(AU™, ¢)],

with ||APPROX(AU",¢) — AU|| < € and ||[APPROX(F,e) — F|| < e.
converges with reduction rate p until error is of order «.

The procedure APPROX(F, ¢) amounts in thresolding F in £?, or
@E/&HEQ the data f in the H’ norm. K
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(Vi)

(W, M)

A<<N<<»v

AS\w_/\pv

(ViW)

(W, W)

(W5, W)

(W5, W)

(Vi)

(W,,W)

(W5, W)

(ViW)

(W, W)

(W5, W5)

Matrix-vector approximation

The procedure APPROX(AU™, ¢) is made possible by matrix
compression: one can build Ay with N coefficients per rows and
colums such that ||[A — Ayx|| < N7

Analysis : based on the Schur lemma, using esimates of the type

(A, 1,0 < [1+ dist(A, p)] P27 Ikl

~

@mié& from the smoothness and vanishing moments of the ). \
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\ The role of thresholding /

Lemma : if U is such that |[U — Uy|| < CN~% and V is such that
|V —Ul|| <e. For a > 1 define W the smallest subvector of V' such
that [|[V — W/|| < ae. Then, we have |[U — W|| < (1 4+ a)e and

Supp(W)| < Ce™/# e, |U — W|| < C|Supp(W)|~*

log(N), log(#(A\))
Thresholding
ensures
optimalit IlU-Up |
P M loge) N\ lU-Un|l n
N} log(error) [lU-U \ll optima

Problem : intermediate memory size and computational time
should also be optimal, i.e. O(¢~1/9).

N /
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\ Geometric tolerances

3 log(N), log(#(A,))
Idea: decrease =2\
-3
tolerances g =1, [
AN
— L1 . . =97
£1 = 99 “mm — TN
TO D __C|C>_T optimal
N2 log(error)

Fixed number of iteration at each step 5 — j+ 1 involving sparse
matrix-vector product: W = APPROX(AV, ¢) obtained by

decomposing V = Vi 4+ [Vo — V4| + [V — V5] + - -+, and taking
W= Ao Vi + Agsa [V = Vi + -+ A1 [Vou — Voua]

with J large enough such that
J
/::\ — AV < [[A[I[IV = Vas || + 2251 |4 = Agr—s [[[|Vas = Vai || <

~

-
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Results

Theorem (Dahmen, DeVore, AC - Math. Comp. 2000) : if V is

Theorem (Dahmen, DeVore, AC - FoCM 2002) : The general
strategy for linear operator equations based on the above
ingredients (thresholding, adaptive matrix vector multiplication)

achieves the ultimate goal, namely production of U™ and
A, = Supp(U™), such that if ||U — Un|| < CN~%, then

U =U" < #(An)~7,

with O(#(A,,)) computational cost.

-

~

such that ||V — Vx| < CN7% and if ||A — An| < N77 with r > s,
then [Supp(W)| < e~1/¢ and therefore ||W — AU|| < [Supp(W)|~*.
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Remarks on practical aspects

All wavelet properties are exploited : Sobolev norm equivalences,

smoothness (not always available) and vanishing moments.

Coarsening is not needed in all practical cases studied so far, yet
seems necessary in the proof of the optimality theorem ! Similar
optimality results recently obtained for adaptive FEM by Binev,
Dahmen and DeVore, using the Morin-Nocetto-Siebert algorithm

combined with coarsening.

Complexity is dominated by assembling matrix elements, numerical
quadratures, addressing the indices in A,, (key role of efficient data
structures). Practical comparison between adaptive FEM and
wavelets based on the same FE spaces : for a given error, wavelets
may win for Ng..¢. but lose (by a factor > 4) for computational
cost.

N /
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\ Extension to more general problems /

Saddle point problems AU + BT'P = F and BU = G, e.g. based
on adaptive approximation of the Uzawa iteration (Dahlke,
Hochmuth and Urban 1999) :

AU = F — B"P" ! and P" = P" ! + x(BU" - G)

No LBB is needed here, adaptivity stabilizes Similar result for
adaptive FEM algorithm : Nocetto 2002. Question : do the same
concepts apply to convection dominated problems, such as

—eAu 4+ a.Vu = 0 with convergence rate independent of ¢ ?

Extension to nonlinear problems : DeVore, Dahmen, A.C. 2002
(need specific adaptation of fast evaluation of F'(U)), no available

numerical results yet.

Problem dependent tuning seems unavoidable in order to optimize

/dEm type of algorithms. \
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\ General evolution problems /

We are interested in initial value problems
Oru = E(u),

which develop singularities in finite time, e.g. hyperbolic systems of

conservation laws
Ou + Div, F(u) =0, u(x,0) = ug(x).

1. Theoretical difficulties: weak solutions, entropy conditions, .

2. Numerical difficulties: only few schemes are proved to converge
and their convergence rate is limited due to the presence of
singularities

Solution to the last difficulty: adaptativity by local mesh

refinement 7

Drawback: implementation (singularities are moving = local

refinement evolves with time) and convergence analysis. K
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\ Multiresolution can help ! /

Some important contributions (80-90):

- Automatic Mesh Refinement (Berger & Oliger): use hierarchical
meshes and locally select the scale of resolution by ad-hoc

criterions or error indicators.

- Multiresolution adaptive flux computations (Harten & Abgrall):
use discrete multiresolution decomposition to accelerate the
numerical flux computations, yet evolution takes place on the

uniform finest mesh.

Since 90: attempts to use wavelet discretizations for the

multiresolution adaptive solution of PDE’s, motivated by their

/@_8:3\ for data compression.

/
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-T;,7=0,---,J: sequence of discretisations at scales 277.

A discrete multiresolution framework

- Uj = (Uj(7))er, discretisation of a fonction w on I';, i.e. vector
of ,Ku. = Eﬁ. .

- Restriction operator P/ ; from V; onto V;_;: computes coarser

discretization U;_; = .ﬁm.LQ ; from the next finer.

Basic example 1: point values on nested grids I';_; C I';, 1.e.
Uj—1(7) = Uj(y) fory € I';_1.

—@ ® ® ® ® ® ® @ ® ® ® @
—@ ® @ @ ® ®

Basic example 2: cell averages on nested partitions, i.e.

-

Uj—1(7) = vol(7) ™1 Y er pey Ol Uj(p) 2o NS

/
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- Prediction operator ﬁm. ~! from V;_; into V;: reconstructs an
approximation U; = ﬁNLSL of Uj.
- Consistancy assumption: NU,NLN% Lo

Point value example: U;(y) = U;_1(7) for v € T';_1, and U;(y)
obtained par local interpolation for y € I'; \ I';_1.

A

Cell avergage example: U,;(y) obtained by “interpolating” the

averages in a consistant way, e.g. via polynomial reconstruction.

B

-
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\ Multiscale decomposition /

Prediction error E; :=U; —U; € W;_| = N@H.Qumlb. Detail vector
D;_1: coordinates of I/; in a basis of W,_;.
Point value example: D;_1(A) = E;(A), v € I'; \ I';_1 interpolation
error at intermediate point. Cell average example: on each coarse
cell of I';_; the prediction error E; has null average = define D;
by removing for each coarse cell v one fine cell p C ~.

Uy < Uj-1,D5-1) (Uj—2,D52,D51) & -+

< (Uo, Do, -+ ,Dj—1) = MUy = (dr)rev,

Physical grid I';

. . s - . . Multiscale grid (point values) V;

/QOHB@_@&@ of M and M~ O(Card(T)) \
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\ Compression /

Thresholding: given a level dependent threshold n = (ng, - ,7ns-1)
set to zero all coefficients |dy| < 7)) < approximation of U; by

T,U; = TaUy = M~ 'RAyMUy,
Ra: restriction of Vy to A = A(n) ={A €V t.q. |dxr| =7z}

sosseseeesioesisecesseesse  Adaptive mesh I'(A)

. . . Adaptive set A

Compressed representation (dy)yeca to the data of point values or
cell averages U;() on an adaptive physical mesh I'(A) associated to
A, (need to impose that A has a tree structure up to enlarging it).

Complexity of adaptive decomposition and reconstruction

K&moiﬁrgm” O(Card(A)) \
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Prescriptions

- Prediction operator should have high order accuray: details are
very small in the regions where f is smooth (|dy| < 27/ if

feC?®).
- Multiscale reconstruction should be stable: ||U; — 7pxU;|| should

be under control for some prescribed norms || - ||. Amounts in
. . . ) — 1 ) — 2 . .
analyzing asymptotic behaviour or Nu% \UmL ... PP as j — oo in

terms of underlying continuous wavelet systems (1))

\U; = TaUs < ) lldawal
_v,_MSym\/

Here 1)y is normalized in L>°. For the control of the L! error, the
level dependent threshold should be 7, := 2% in d dimensions.
For the L°° norm n; := 1. For the BV norm 7, := 2(d=Dipy.

- /
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Reference scheme on I';: approximation of u(x,nAt) by
7= (U}(7)yer, with Uy = E;Uf

U™ () =Uj(y) + F(UF (1) 5 1€ S(v)).

Adaptive multiresolution processing

S(7): local stencil (excludes implicit schemes).

In the case of F'V conservative schemes, F' has the form of a

balance over the edges surrounding the cell ~

Uyt =uim -+ Y,
po St Ty, ]#0

where F' = —F!_ is a function of the U} (v) for v in a local

stencil surrounding v and u.

-
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Adaptive algorithm

Goal: compute approximations of u(x,nAt) by (V;', A}), where
Vit = (V7 (7))ver, is represented by its coeflicients (df)xean or its
physical values (point values or cell averages) on the adaptive mesh
(V7' (¥))eran) (we always impose the graded tree structure on
A7)

Benchmark: an ideal choice would be A7 the smallest graded tree
containing {A, |dx(U7)| > n5} but it is not be accessible. The
adaptive solution V7 should still be comparable to 7,,U%, i.e. the
corresponding thresolding operator applied to the exact reference

solution.

Initialization: define A} the smallest graded tree containing
{X\, 1dr(U9)| = A} and set V) := T, U9,

- /
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Derivation of (V7 A1) from (V7 A,,)
Three basic steps:

- Refinement: predict a superset A C \wmt adapted to describe
the solution at time n + 1 (ideally such that |d\(E;V})| < )y if
\ ¢ .\wmiv and extend by d} =0 for \ € \wmi \ A7

- Evolution: compute the new value V' (v), for v € :.\wmtv
(ideally V'™ = Tini1 E5 V7).

- Coarsening: apply level dependent thresholding operator to the
computed vector vaym\wmt = new set >m+p C \z/m.I and a\ﬂwt.

-

/
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Remark 1: loss of accuracy with respect to the reference scheme is
monitored by the threshold n (if n = 0 the adaptive scheme
coincides with the reference scheme). This threshold should be
chosen in order to remain within the same accuracy while reducing

the CPU time and memory space.

Remark 2: the discretization of the reference scheme and of the

multiresolution approximation are decoupled:

- One can apply point value multiresolution on a finite volume
scheme based on cell-averages discretizations (however

conservativity is violated).

- One can apply multiresolution with high order prediction on a low
order scheme. The resulting adaptive scheme should inherit the

high order accuracy of the compression process (up to the accuracy

of the reference scheme).

N /
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\W@B%w 3: loss of accuracy with respect to the reference scheme
depends on each of the three steps.

- Coarsening: accuracy is controled by the level of the threshold 7
and the stability properties of the multiscale reconstruction

(existence of underlying continuous wavelet systems).

- Refinement: accuracy is controled by analyzing the action of the
discrete evolution operator E; on the size of the coefficients in the

multiscale decomposition.

- Evolution: need an accurate evolution step in the compressed

form. T'wo possible approaches:

(i) direct application of the numerical scheme on the adaptive grid
(A7) (usual AMR approach)

(ii) exact computation of 7; in+1 BV} by local adaptive

/wmoosm?soﬁos. \
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\ Evolution by direct application

Locally the adaptive discretization is uniform, or can be made

locally uniform by using the prediction operator.

This allows to compute V' (v), for v € :\wmivu by direct
application of the numerical scheme E; at the local scale 277,
therefore with complexity Gﬁﬁ\wmivv.

This approach gives good results if the reference scheme has high
order accuracy comparable to the prediction operator. For a low
order reference scheme, it gives significant loss of accuracy in the

regions where I'(A7"1) is coarse.
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-

Evolution by local reconstruction

Only reconstruct V' (u) for those p € I' ; which are needed to
compute exactly £/;V; on the adaptive grid E.\wmiv. This gives
more accurate results, yet with additional computational time.

A

For cell averages in dimension 1 and for point values in any

dimension d, the complexity remains in GT%CMNLLVV.
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\ Numerical illustration

In 1D: comparison of AMR and local reconstruction on Sod tube
test.

Flux computed with 1st order Roe scheme
eps=10E-4
1

1.2 :

01 ¢ :

®-e

e

S : i

= ] H I
T 0.01 | M@w m 2
- i |
ooOrO—o0 /,‘”/
0.001 | ®-600-0—%®

0.0001 : - : -1 -0.5 0 0.5 1
1 10 100 1000 10000

cpu X

For a low order reference scheme, only local reconstruction

preserves the accuracy with a substantial reduction of CPU time

ﬂpbm memory space (1/20 at best).
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In 2D: Burgers equantion (triangle cell-average multiresolution).

n=0 t=0 n=284 t=1.
eps=0.02 3040 triangles eps=0.02 6707 triangles
2 7 7 2 ) arazaRy;
b %
1 1Y
2 B2)
x x %
A_n 0 A_n 0
> >
b %
-1 -1
-2 Z \H -2 Z Z
-2 -1 0 1 2 -2 -1 0 1 2
X—-Axis

Compression of solution by a factor 40 without loss of accuracy

(smaller CPU saving).

-
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Curse of dimensionality for cell-averages

&
|:

it
i[

For cell-averages in dimension d, complexity grows like

J
O() 21 DU=Dg(Artt 0 V)

j=1

still less than O(#(T'y)).

-

~
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\ Error Analysis

<3|TH \Nl\/BA_IH \Nl\/BA_IH mnNa\nN

Compare Qmil = E ;U with a\g:i = T\

n—+1

with d,, = |V} — E;V?| < t, + ¢, where

= || 7a

n+1 >:+H

@%Em with a prescribed precision ¢.

Remark: adaptive evolution with local reconstruction is given by

17: BV,
3+H
Cumulative error analysis between both solutions:

U — VI < ||E U — ESVE| + dy,

E,Vi=Tx, EsVil, en =13, EJVS—E;VS,

denote the thresholding and refinement errors. The analysis of
refinement and thresholding strategies should allow to control both

~

/
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Controling the thresholding error

Analysis based on underlying continuous wavelet system (1) ):

\U; = TaUs || <) lldaipall-
AEA

For the L! norm, this gives [|[U; — TpU;|| < C D rga 2-4M|dy |, and
therefore with n; = 2%,

WU, =T,us1<C > 27Wdy
2= dx|<no
- Crudest estimate: no# (V) ~ 1n92%/ = take ny = 279/,
- Better estimate: mo#(A" 1) = take ny = e/#(A"11).
- Even better: take largest 1o s.t. } 5-aixia,|<n, 274N |dy| < e.

- /
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Controling the refinement error

Harten’s refinement rule for hyperbolic equations (assuming CFL
condition for the reference scheme At < C277):

- If |dy| > n)5 include in \wmt the neighbors of A at the same level.
- If |dx| > 2" '), also include the childrens of A at the finer level.

Here r represents the order of accuracy of the prediction operator.
Not sufficient to prove that |dx(E;V})| <npa if A ¢ \wmt.

This can be proved by a more severe refinement rule: refine of n
level if 275~y < |dy| < 200Dy Cwith s the Holder
smoothness of the underlying wavelet system.

In practice, however, we observe that Harten’s rule is sufficient and

that the thresolding error dominates the refinement error.

- /
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\ A crude error estimate /

Assuming stability in the prescribed norm || - || for the reference
scheme in the sense that |E;U — E; V| < (1 4+ cAt)||U — V||, this
yields the cumulative (too pessimistic) estimate

3

JUFH = VI < (L4 eAn)||UF = VPl +e <o < O(T)ns ~

For conservation laws, a natural choice is the L' norm. In most
practical cases, we observe that thresholding and refinement error
does not accumulate linearly.

Moreover, no error bound is available in terms of the number N. of
wavelet coefficients which is used to represent the adaptive
solution, although we can expect ¢ ~ N 77 s =min{s(1), s(ug)}
and therefore when equilibrating with the error estimate (Az)® for
the reference scheme, we would obtain the global L' error

N—°% o

/ €n M Ar ~ AD@.vQ ~ N °a+1 \
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The role of oscillations

A simple example : upwind scheme for the 1D linear advection

equation O;u + ad,u = 0 with a > 0 :
up = (1= v)up ™" +vupT)

with v = QL 2L €]0,1[. Consistancy error ¢ propagated according to

m
=01 —-v) g v = MU WP(1 —v)" Peg_yp.

Assuming that ¢, = % and that we have a control on
Ax ), |ér| = ||consist||ri,, we obtain
m
= (Az)™t Y [P =)™ = ()P (A = )P e,
p=—1

- /
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hsm therefore /

lc™ e = Az 3y o]
<D [P =) P = (P P (L — )P S (G
< 2suppl_q [(FO)VP(1 —v)" 7P YL |G| ~ ,\Fﬂ Dk k|-
It follows that at time T' ~ nAz the L' error is controlled by

V) lek| ~ (Ax) 73| consist| iy
k

This analysis allows to recover the classical (Ax)'/? estimate for
uniform schemes (||consist||Li,y ~ (Ax)? assuming BV smoothness).

We can apply it to the adaptive scheme with now a Lip’
thresholding strategy 7; ~ 17922/ ensuring ||V — E;VP||Lipy < e,
which leads to an L' error estimate

/ (U5 = Vil < (Ax) 2% K
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We now expect ¢ ~ N~ 5 — min{s(1)), s(ug)} and therefore
when equilibrating with the error estimate (Ax)® for the reference
scheme, we would obtain the global L' error

(0%

e, M Ap&vlw\MZIm -~ AD&.vQ ~ N Sa73/2

A third possibility is to apply BV thresolding 7; ~ 19 ensuring
[Vt — E;VP| gy < e, for which we now expect an L! error

estimate 1n
U5 =V <e~ N7ETY

and therefore a similar estimate for e,,.

No clear winner between the three strategies !

N /
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Several remaining issues
Automatic tuning of the thresholding parameter
Efficient implementation of tree-structured representation
Problem adapted refinement rules
Arbitrarily high resolution and time adaptivity
Prediction operators on unstructured grids
Nonlinear prediction operators
Breaking the curse of dimensionality
More general time-frequency bases
Adaptation of this approach to non-local implicit schemes

Comparison to nonlinear approximation benchmark
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