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1. Macroscopic description of particle
systems
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Fluid variables 4

w Fluid quantities = averaged over a 'small’ volume
in physical space

w Ex. Density n(x,t) dxr = number of particles in a
small volume dzx.

Mean momentum q dx = E V;
1€dx

Mean energy W dx = Z ;] /2

1€dx

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Link w. the kinetic distribution function 5

I 2

[n (1)
\ [o

w n, g, W,...are of f
Eqgs forn, g, W, ... are called fluid (or
macroscopic) equations
Ex. Euler, Navier-Stokes, Drift-Diffusion, etc.

dv

o
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Hydrodynamic limits 6

= How to derive fluid eqs from kinetic eqs ?

. 1 .. 9 .
Particle — Kinetic — Fluid

1 Mean-Field limit
Boltzmann-Grad limit

2 [ Hydrodynamic limit
Diffusion limit

\
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2. The moment method
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Moment method 8

w Natural 1dea: (1) multiply Boltzmann eq. by
1, v, |v|* and integrate wrt v:

(1)
\ [/

/ (D +v-V.)f — Q) I

g (11) use conservations:

(1)
/Q(f) v
\ 10" /
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Moment method (cont) 9

w (111) Get conservation egs

o[ \+‘G:/f/i \
\ [v*

w Problem: Express fluxes in term of the conserved
variables n, g, W

[ fvsvydo (for i # j) and [ f|v]* v dv cannot
be expressed in terms of n, q, W.

vdv =0

ot

q
\ 2

mw conservation e€qs are not
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Fluxes 10

w Density flux: [ fvdv = q. Define

w="2 Velocity
n

m Momentum flux tensor:

/fvvdv /fuudv+/f(v—u)(v—u)dv

= nuu—+ P
[P pressure tensor, not defined in terms of n, q, W
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Fluxes (cont) 11

mw Energy flux

/f]v\zvdv = 2(Wu + Pu + Qu)

2Q = /f]v—u|2(v—u)dv

not defined in terms of n, g, W
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Conservation equations 12

I 2

S\ (m \

q + V., | nuu+P =0
\ W \ Wu+Pu+Q |

ot

w Problem: find a prescription which relates [P and
Qton, u, W:

Closure problem
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(Summary)

3. Local thermodynamical equilibrium:
Euler eq.
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Hydrodynamic scaling 14

—~ m m m m W W W W OE W WM EEEEEEES -—

Microscopic scale

Macroscopic scale

mw Rescale: @' = ez, t = ¢t

e(Of* +v-Vuff) =Q(f)
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w Suppose f° — fy smoothly. Then

Il 2

(Summary)

i.e. In(z,t), u(x,t), T(x,t) st. f=M,ur

[

ncuc
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Limite — 0

)

\ 27°

Q(fo) =0

[ n
nu

)

\ QW = n|ul® + 3nT /
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I 2

I 2

(Summary)

Fluxes

sz/fg(v—u)(v—u)dvﬁpzpld

p = nl = Pressure

2Q€:/f5\v—u\2(v—u)deO
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Conservation eqs as € — 0: Euler eq.

I 2

0

ot

[ n

u

\

\ n|ul®*+3nT |

+V,

w Euler eqs of gas dynamics.
p = n’l’ perfect gas Equation-of-State

(Summary)
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[ nu \

nuu + n'1d

\ (n|u]* +5nT)u |
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18

4. Hilbert expansion and the Navier-Stokes
eq.
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Beyond Euler

w Problem: find order ¢, £°

eqs.
w Expand (Hilbert expansion):

f62f0—|—€f1—|—€2f2—|—...

Insert 1n the Boltzmann eq.

Of + v Vaf = Q)
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Hilbert expansion 20

(fo)
+e((0r +v - Vo) fo— Lf1)

+eX (0, +v- V) fi — (1/2)D(f1, f1) — Lf>)
+...=0

Lfi = DQ(fy) - fi First derivative
D(f1, fi) = D*Q(fo)(f1, f1) Second derivative
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Linearized BGK operator 21

IS Slmpllﬁcatlon Q —

Q(f) = —v(f — My)

w [inearized BGK operator:

L= _V(fl — Mfl)
My, = (A+ B v+ Clv]*) My,

A,C €R, B € R’uniquely determined by

(1)
\ [v]*
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Linearized Maxwellian 20

w M ¢ : Linearized Maxwellian about
M fo — Mn,u,T-

0

m  Alternate expression

ny v—1u v —wul* 3

Muanit, = Gt ==t (=95

where nq, uq, 17 are given by

(1) (1 \
nuq :/f1 vV — U dv
\ 3nT1 ) \ [v—ul*—3T )

)Tl ) Mn,u,T

|
-
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Projection on the linearized Maxwellian 23

w f — M 1s a projector I1:
I1* =11
w [inearized BGK operator:

Lf = —v(f - TIf)
satisfies 11 = 0.
(1)

w We also write f= / fl v
\ [v]* /

[If =0« 7nf =0
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Properties of L 24

w (1) Null-Space:

Lf1 = () <— Hnl, U1, T1 S.t. f1 = Mnl,u1,T1

m(11) Collisional invariants

(Summary)

/Lflgdv:()@g:(A+B-U+CM2)

where A,C €¢ R, B € R’ arbitrary
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Properties of L (cont) 25

m (111) pseudo-inverse: g; given.

df1 s.t. Lfi = g1 <

(1)
ngzz/gl v dv =0
\ [vI*/
J1 = —V_lg1 My, w1, M1, U1, 17 arbitrary
w fi = —v~1g; uniquely characterized by

mf1 =0

Pseudo-inverse
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Hilbert expansion (cont) 26

w Cancel each term of the expansion

w Order 7% In, u, T s.t.
Jo= Mpur1
w Order £:
Lfi = (0 +v-Vyi)fo

First order perturbation equation. Solvability ?
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First order perturbation eq. 27

3 Elfl <>

(1)
\ [o]* )

w(é‘ﬁv-vx)fg L= /(&gﬂ}Vx)fo dv =20

<= n, u, 1 satisty the Euler eq.

w Solve for fi:

fl — _V_l(at + v - vx)f() =+ Mnl,ul,Tl

ni, ui, 17 arbitrary
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Second order 28

w order &'

Lfy= (0 +v-V,)fi —(1/2)D(fi, f1)
w Solvability cnd: dfo
< 77((875 + U - vx)fl _ (1/2)D(f17 fl)) =0
1.e.

—7(0y +v- V) (v 0 +v- V) fo)
+7(0 +v - Vi )My — (1/2)7D(f1, f1) =0
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Details of 2nd order solvability eq. 29

w (1) Derivatives of () at any order satisfy the
conservation properties:

mD(f1, fi) =0

w (i1) Denote LE (n1, uq,T}) the linearized Euler
operator about n, u, 1" acting on (n1, u1,77). Then:

(0 +v- Vo) My, w1 = LE(M1,uy, Th)

Ex: linearized density conservation operator:
[,E(nl, U1, Tl)l —0mn1+V, - (nu1 -+ n1U)

clc.
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Derivatives of Maxwellian (1) 30

w (111) Euler equations for n, u, T" =

O (v (0, +v-Vy) fo) = Om(v (O +v-V,) fo) =0

I 2 (IV) [Last term:;

m(v-V) (v H04v-V,) fo) = V- (mov 1 (0,4v-V,.) fo)

m requires the computation of:

oM
d(n,u,T)

(@t‘|‘v'vx)Mn,u,T — (@t+v-vx)(n,u,T)T
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Derivatives of Maxwellian (2) 31

w Euler equation — replace time derivatives of
(n,u,T") by space derivatives

Oy +v- V)M =(A:0(u)+B-VI')M

w with
1 (v—u)(v—u) |v—ul?
S I
A 2( I S )
L Jv—ulr 5 v—u
5=57 )T

(1) = Vi + (V)T — g(v u)ld

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Properties of A and 55 32

Il 2 WA:O,WB:O
= computation of w(v.A) and 7(vB) (omitted) gives
[0 \

v N0+ v - V) fo= | po(u)
\ 2(po(u)u+ KkVT) /

1 =v 'nT = viscosity
k = (5/2)v 'nT = heat conductivity
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Second order solvability cnd (summary) 33

[0 \
LE(ny,ur,Th) = | Vi (uo(u))
\ 2V (o (w)u + kVT) /

Linearized Euler with rhs depending on second order

derivatives of the leading order terms.
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Reconstructing Navier-Stokes 34

w Define
n®=mng+eny, u° =uy+euy, T° =Ty + 1}
w Up to O(e?) terms, n°, u°, T¢ satisfy the

Navier-Stokes equations

omn+V, -nu=0~0

omu + V- (nuu + nT1Id) = eV, (uo(u))

Oy(n|ul® 4+ 3nT) + V. - (n|ul* + 5nT)u) =
2eV, (o (uw)u + kVT)
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Remarks on Navier-Stokes eqs 35

w Diffusion terms of order O(¢)

w Diffusion terms of order O(1), requires small
velocities 1.e. rescaling u — cu. Gives
Navier-Stokes eq.

w Higher orders: O(g?) — Burnett.
contains 3rd order derivatives (dispersive) —>
ill-posed.
Same for higher order (O(e?) = Super-Burnett)

w Stationary sols of Euler # stationary sols of NS
(cf replacement of time derivatives by space
derivatives). Same at higher orders.
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The distribution function up to O(s*) 36

w Build the approximate solution:

f& = Myur +e(fi + My, w,.1y) + O(?)

~ ~

fi=—v Y0, +v-Vo)M, wfi=0
mw Note
J\Irﬁ,ug,T8 — Mn,u,T + 5Mn1,u1,T1 + 0(52)

Then i
f& = Mo +efi + O(£%)

7Tf8 — WMnsjuszs — 0(52)
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Need for the Chapman-Enskog expansion 37

w £ and M, - 7- have the same moments up to
terms of order O(&?)

w Hilbert expansion does not produce M e e 7-
directly

w Can we modity Hilbert expansion in a such a way
that M, - 7 appears as the leading order term ?

m Chapman-Enskog expansion
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(Summary)

5. Navier-Stokes eq. via the
Chapman-Enskog expansion
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Modified expansion 39

IS fg — fg —|— 5ff —|—€2f28 —|— . ..
fr may depend on ¢ but is still formally O(1).

w [eading order satisfies Q( f;5) = 0. Implies
fS: — ]\477,5,u5,T6

m We 1impose
wf. =0,Vk >1
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Chapman-Enskog Expansion 40

__50((at 4
__51((at 4
+...=0

U - va})f() — Lfl)
v-V)fi—(1/2)D(f1, f1) — Lfs)

w Applying II and using that I[I1L = O:

(0, +v - V,) fo = O(¢)

e((Id —I0)(0; + v - V) fo — L f1)

—I-El((@t +v- V) fi+ 5_11_[(875 +v- V) fo

(Summar y) Pierre Degond -

(1/2)D(f1, fr) = Lf2) +... =0

overview of kinetic models - Luminy, July 2003 (Conclusion)



First order perturbation eq. 41

w [dentity to O term by term:

w First order perturbation equation
Lfiy =0d—=10)(0; + v - V) fo

Solvable by construction
We request I1f; =0
Unique solution:
fi = —v H(ld =) +v - Va)fo
= v (A:o()+B-VI'M
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second order perturbation eq. 42

Lfy= (0 +v-Vy)fi+e T +v-V,)fo
—(1/2)D(f1, f1)
mw Solvability cnd
(0 +v-Vy)fot+em(Oy+v-Vi)fi =0

m(0 + v - V) fo — full Euler operator
moif1 = Ol f1 =0

m(v-V.)fi already computed in the Hilbert expansion:

gives the Navier-Stokes terms

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Solvability condition: result 43

w The solvability condition for f? directly gives the
Navier-Stokes equation

on—+ Vs, -nu=20

omu + V- (nuu +nT1Id) = eV, (uo(u))

Oy(n|ul* + 3nT) + V, - ((n|u]* + 5nT)u) =
2eV,(po(u) + kVT)
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44

6. Remarks and overview of rigorous results
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Entropy for Euler 45
mw H-theorem —>

0
a/f(lnf_1)dv+vw'/f(lnf—1)vdvg()

w FEuler: fg ﬂ) n,u, T SpeCiﬁC entropy S:

n 3
nS = /M(lnM—l)dv =n (ln 2n TV 5)

Entropy inequality for Euler (= for smooth, < for
weak):

%(nS) + V.- (nSu) <0
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Entropy for Navier-Stokes 46

0 V. T\
E(nS)Jer- (nSqus/f n )-

e (%a(u) o (u) - \Vj{?) <0

w Burnett or super-Burnett not consistent with the
entropy 1nequality

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Rigorous results for the hydrodynamic limit 47

w (1) Boltzmann — compressible Euler

Theorem [Caflish, CPAM 1980] n, u,’I" smooth
solutions of Euler on a time interval |0, t*] (t* <
blow-up time of regularity), with initial data

1o, Uo, Lo

Jeg > 0, Ve < g¢, df° a solution of the Boltzmann

equation with initial data M,,, ., 7, on |0,¢*| and

Fup] [f°(t) = My ur(t)|| < Ce
0,t*

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Rigorous results for the hydrodynamic limit (29s

w Boltzmann — incompressible Navier-Stokes

w Perturbation of a global Maxwellian with u = 0.
Rescale velocity and time (diffusion limit)

ref: [De Masi, Esposito, Lebowitz], [Bardos,

Golse, Levermore], [Bardos, Ukai], [Golse,
Saint-Raymond]
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More about hydrodynamic limits (1) 49

w Boundary layers:
Slip boundary conditions for the Navier-Stokes
equation
ref. [Sone, Aoki], [Golse, Coron, Sulem]

w Choc profiles:

stationary solution of Boltzmann equation
which connects states at infinty connected with
the Rankine-Hugoniot relation

ref. [Caflish, Nicolaenko], [Bardos, Golse,
Nicolaenko]
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More about hydrodynamic limits (2) 50

m Kinetic schemes:

use of kinetic eqgs to derive schemes for the
Euler eq.

ref. [Pullin], [Deshpande], [Perthame], [Lions,
Tadmor, Perthame], [Bouchut]

w Fluid-kinetic coupling

through boundary layer analysis and kinetic
schemes

ref. [Struckmeier et al], [Le Tallec et al]
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More about hydrodynamic limits (3) 51

w Relaxation systems
Similar structure

use of relaxation to ’stabilize’ Burnett
equations via Chapman-Enskog like expansions

ref. [Chen, Liu, Levermore], [Jin, Xin], [Jin,
Slemrod]

w Asymptotic preserving schemes

Schemes for the kinetic equation which are
valid 1n the hydrodynamic limit

ref. [Klar], [Jin, Pareschi, Russo]
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Criticism of Navier-Stokes 52

w When V, large (transition regime)
Correction terms not small
Perturbation approach not valid

w Example of flaw:

fg e Mnsjuszs —|— E‘:fl —I_ 0(52)
= M —ev Y (A:o()+ B-VT)M® + O(?)

May be non-positive

Loss of realizability
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Cures of failures of Navier-Stokes (1) 53

w First idea: Go beyond Navier-Stokes in the Hilbert
(or Chapman-Enskog) expansion:
— not good: if first order perturbation not small,
higher order ones will not be either !

w Example: Burnett not consistent with entropy
dissipation
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Cures of failures of Navier-Stokes (2) 54

w Second idea: Try to increase the number of
moments
Moment system hierarchies

ref. [Grad], [Muller, Ruggeri (extended
thermodynamics)], [Levermore]

w Try to do 1t consistently with the entropy
dissipation rule

Levermore models (see applications in [Anile,
Russo et al])

Developped 1n the next section
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(Summary)

7. Higher order moment systems:
Levermore’s approach
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Moments (1) 56

m ]1st of monomials ,uz-(v)

p(v) = (1i(v))izo

w Contains hydrodynamic moments

po(v) = 1; pi(v) = vi, i = 1,2,3; py(v) = |v]?
mw Example
u(v) = {1,v,vv} Gaussian model
p(v) = {1,v,00, v, [v]*}
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Moments (2) 57

w For a distribution function f, define:
() = i)y, i) = [ fuuto)do
w Eq. for the 1-th moment:
0
O£+ V. / frawdo = [ Q(Pu(e)do

w Note f Q(f)p;(v) dv #£ 0 if p; # hydrodynamic
monomial
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Closure problem

w Find a prescription for

[ futovdoand [ QUr)psto) o

1n terms of the moments m;

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003
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Entropy minimization principle (Gibbs) 59
w Letn, T € R,, u € R? fixed.

min{ H ( f /f In f —1)dvs.t.

(1 [n )
/f v dv=| nu }
\ [v]* / \ 7ful* + 3nT" |

is realized by f = M, 7.
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Proof of Gibbs principle 60

w Euler-Lagrange eqs of the minimization problem:
JA,C € R, B € R’ (Lagrange multipliers) s.t.

/(lnf— (A+B-v+Clo2)6fdv=0,V6f

w = f =exp(A+ B-v+ C|v|*)
i.e. f = Maxwellian
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Euler eqs in view of the entropy principle 61

w Euler eqs = moment system (only involving
hydrodynamical moments), closed by a solution of
the entropy minimization principle

w Jdea [Levermore], [extended thermodynamics]
Use the same principle for higher order moment
systems
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Generalized entropy minimization principle 62

w Given a set of moments m = (m;);.,, solve

min{ H (f /flnf 1)dv s.t. /fu )dv = m}

w Solution: generalized Maxwellian:

3 vector o = ()Y s.t.

= Ma(v) — exp(oz :u — €Xp Z@zﬂz
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Levermore moment systems 63

m Use the generalized Maxwellian M, as a
prescription for the closure

% / Mo pu(v) do+V ;- / Meap(v)v dv = / Q(Mo)p(v) dv

Gives an evolution system for the parameter o

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Potentials 64

m Has the form of a
: Define

Y(a) = /M&dv:/exp(ow,u(v))dv
/ Myvdv = / expla - p(v))v dv

=
=
||

>(ar) = Massieu-Planck potential, ¢ = flux
potential

oy 0p
a —/Ma,u(v) dv By M p(v)v dv
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Symmetrized form 65

w Moment system =

gtgi -V, 8(;5 = r(a)

0 = [ Qo

o y y
a7 31+ o Ve =)

0*Y/0a* = [ Myp(v)p(v) dv symmetric > 0
0*¢/0a” = [ Myu(v)p(v)vdv symmetric
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Hyperbolicity

w Hyperbolicity — well posedness (Godounov,
Friedrichs)

w == Grad systems: not everywhere locally
well-posed

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003
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Entropy

= S(m) = Legendre dual of >(«):

S(m)=a-m— ()

where « 1s such that

m = g—i(: /M&,u(v) dv)

w Then
N = —
om
(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003
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Entropy (cont) 68

w « and m are conjugate variables.

a = entropic (or intensive) variables
m = conservative (or extensive) variables

w Link with H
S(m) = /(oz-,u—l)Madv
= /(ln M, —1)M,dv = H(M,)

Fluid entropy = Kinetic entropy evaluated at
equilibrium
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Levermore’s model in conservative var.

o+ 9. 22 (52m) ) =7 (o-tm) )

= Entropy inequality

0:S(m) + V- F(m) = gi r
F(im)=a«a- gz (ov) = Entropy flux

with o« = 95 /0m

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003
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Entropy dissipation 70

05 Y = /Q o) b dv
om

/Q )In M, dv <0

Thanks to H-theorem

w [evermore system compatible with the entropy
dissipation

0:S(m)+ V., -F(m) <0

Entropy dissipation = 0 1ff M, = standard
Maxwellian M,, , 1
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Example: Gaussian closure 71

TS ,u(”U) — {1,2],?}?]}.

n 1

Mo = Gorarg) e O (-5@ WO (v — u)>

© symmetric > 0 matrix
a~ (n,u,O)

on—+V, -nu=>0
omnu + V, - (nuu +n0O) =0
Or(nuu + nO) + V., - (nuuu + 3nO© Au) = Q(n, O)

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)
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m Collisions

w Entropy: S = no
Entropy flux: I'' = nou

DO | Ot

o= In " —
((det 277@)1/2>

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



General models: constraints 73

w It highest degree monomial of odd parity, integrals
like [ exp(a - p)pdv diverge
Constraint on p: The set of « s.t. the integrals
converge has non-empty interior
Highest degree monomial must have even

parity

= Moment realizability:
characterize the set of m such that 4o and
m = [exp(a- p)pdv
ref. [Junk], [Schneider]

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Example: 5 moment model (in 1D) 74

w ref. [Junk]:
Moment realizability domain not convex

fluid Maxwellians lie at the boundary of the
realizability domain

Fluxes and characteristic velocities — oo
when m — Maxwell.

m Severe drawback since collision operators relax to
Maxwellians

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Problems (cont) 75

w Explicit formulae for | exp(a - p)p dv and

[ exp(a - ) v dv not available beyond Gaussian
model

w Inversion of & — m not explicit. Iterative
algorithms to solve the Legendre transtorm.

w Collision operator: r(«) = [ Q(M,)u dv does not
give the right Chapman Enskog 11m1t. (viscosity
and heat conductivity < Navier-Stokes)

Needs to correct the collision operator
[Levermore, Schneider].

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Practical use of Levermore’s moment models76

w Successful applications in a selected number of
cases

Gaussian model [Levemore, Morokoff]
P? model of radiative transfer [Dubroca]

w (Give a systematic methodology to 1imagine new
models and new closures.

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)
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77

8. Summary, conclusion and perspectives

Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)
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m Kinetic — fluid by the moment method
closure problem
Relaxation to equilibrium — Euler

Correction to Euler (via the Hilbert or
Chapman-Enskog expansion): —
Navier-Stokes

w Transition regimes: gradients are too large and
Navier-Stokes breaks down

Need for new models

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)



Summary (cont) and perspectives 79

mw [evermore’s attempt:
closure by means of the entropy minimization
principle
Nice features (hyperbolicity) but some flaws
(moment realizability)

w The 'race’ to models for transition regime 1s still
not won

Major challenge for kinetic theory in the future

(Summary) Pierre Degond - overview of kinetic models - Luminy, July 2003 (Conclusion)
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