Fast domain decomposition methods for Continuum Solvation: efficient and parallel implementation

Filippo Lipparini, Université Pierre et Marie Curie

Benjamin Stamm, Université Pierre et Marie Curie et CNRS

Louis Lagardère, Université Pierre et Marie Curie et CNRS

Eric Cancès, École des Ponts ParisTech

Yvon Maday, Université Pierre et Marie Curie

Jean-Philip Piquemal, Université Pierre et Marie Curie

In this communication, we present an efficient and parallel implementation of the ddCOSMO algorithm, recently proposed by some of us[1, 2] to solve the equations associated with the COnductor-like Screening MOdel (COSMO), a popular solvation model. Such an implementation has been coupled with both classical molecular dynamics codes (TINKER) and quantum chemistry packages (GAUSSIAN): with respect to previous, existing discretizations, ddCOSMO is at least two orders of magnitude faster, paving the way to routine applications with large molecules. Some first, preliminary applications are shown.

Références
