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Introduction

Geometric equations

We are interested in geometric equations governing the movement of
a family K = {K (t)}t∈[0,T ] of compact subsets of RN :

Vx ,t = h[K ](x , t , νx ,t ,Ax ,t ). (1)

Vx ,t is the normal velocity of a point x of ∂K (t).

νx ,t is the unit exterior normal to K (t) at x ∈ ∂K (t).

Ax ,t = [−∂νi
∂xj

(x , t)] is the curvature matrix of K (t) at x ∈ ∂K (t).

K 7→ h[K ](x , t , νx ,t ,Ax ,t ) is a non-local dependence in the whole
front K (up to time t).
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Introduction

Initial condition

Let u0 : RN → R be a bounded and Lipschitz continuous function on
RN which represents the initial front, i.e. such that

{u0 ≥ 0} = K0 and {u0 = 0} = ∂K0

for some fixed compact set K0 ⊂ RN .

We also assume that there exists R0 > 0 such that

u0 = −1 in RN \ B̄(0,R0).

A. Monteillet (Univ. Brest) Approx. schemes for nonlocal equations 5 / 30



Introduction

Level-set equation

The level-set equation associated to (1) is{
ut (x , t) = H[1{u≥0}](x , t ,Du,D2u)|Du(x , t)| in RN × (0,T ),

u(x ,0) = u0(x) in RN ,
(2)

where

H[1{u≥0}](x , t ,Du,D2u)|Du(x , t)|

=h[{u ≥ 0}]
(

x , t ,− Du
|Du|

,
1
|Du|

(
I − Du DuT

|Du|2

)
D2u

)
|Du(x , t)|.
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Introduction

Main issue

Main problem : h is not necessarily monotone in K :

K ⊂ K ′ does not imply

h[K ](x , t , ν,A) ≤ h[K ′](x , t , ν,A).

⇒ No inclusion principle :

K0 ⊂ K ′0 does not imply K (t) ⊂ K ′(t) for all t ≥ 0.

⇒ The classical viscosity techniques for building a solution fail.
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Introduction

Example : dislocation dynamics

Recently, the dislocation dynamics model,

Vx ,t = c0(·, t) ? 1K (t)(x) + c1(x , t)

of associated level-set equation

ut (x , t) =
[
c0(·, t) ? 1{u(·,t)≥0}(x) + c1(x , t)

]
|Du(x , t)|,

has drawn a lot of attention.

c0(·, t) ? 1K (t)(x) =
∫

K (t) c0(x − y , t) dy is a nonlocal driving
force.

c1 is a prescribed driving force.

Abscence of sign of c0 ⇒ Non-monotone problem.
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Introduction

Definition of weak solutions
Let u : RN × [0,T ]→ R be a continuous function. We say that u is a
weak solution of (2) if there exists χ ∈ L∞(RN × [0,T ]; [0,1]) such
that :

1 u is a L1 viscosity solution of{
ut (x , t) = H[χ](x , t ,Du,D2u)|Du(x , t)| in RN × (0,T ),

u(x ,0) = u0(x) in RN .

2 For almost all t ∈ [0,T ],

1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0}.

Moreover, we say that u is a classical solution of (2) if in addition, for
almost all t ∈ [0,T ] and almost everywhere in RN ,

{u(·, t) > 0} = {u(·, t) ≥ 0}.

A. Monteillet (Univ. Brest) Approx. schemes for nonlocal equations 9 / 30



Introduction
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Convergence of approximation schemes for nonlocal equations

We are now concerned with numerical approximation of weak
solutions to (2).

This work is inspired by the general convergence result of Barles and
Souganidis (’91) on monotone, stable and consistent schemes.
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Convergence of approximation schemes for nonlocal equations

Notation

We define :

A time step h = T/n for some n ∈ N∗.

Space steps ∆i = λi h for λi > 0 fixed (i = 1, . . . ,N).

For (i1, . . . , iN) ∈ ZN , xi1,...,iN = (i1∆1, . . . , iN∆N),

The space grid Πh =
⋃

(i1,...,iN )∈ZN xi1,...,iN ,
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Convergence of approximation schemes for nonlocal equations

Approximation schemes

We consider approximation schemes of the following form : for any
k ∈ N such that (k + 1)h ≤ T , and for any x ∈ Πh, we set{

uh(x , (k + 1)h) = uh(x , kh) + h Hh[1{uh≥0}](x , kh,uh(·, kh)),

uh(x ,0) = u0(x).
(3)

We finally extend uh to a piecewise constant function on RN × [0,T ] by
setting for any (x , t),

uh(x , t) = uh(xh, [t/h]h),

where for x ∈ RN ,

xh := ([x1/∆1 + 1/2]∆1, . . . , [xN/∆N + 1/2]∆N) ∈ Πh.
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Convergence of approximation schemes for nonlocal equations

Nonlocal dependance

The dependance Hh[χ](x , kh,u) is in fact :

On χ(xi1,...,iN , lh) for (i1, . . . , iN) ∈ ZN and 0 ≤ l ≤ k ,

and u(xi1,...,iN , kh) for (i1, . . . , iN) ∈ ZN .

We keep in mind that H[χ](x , kh,u) depends on the entire history
χ(·, lh) for l up to k .
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Convergence of approximation schemes for nonlocal equations

Proof of convergence

The proof is based on the proof of the convergence result of Barles
and Souganidis :

consider (hn) such that 1{uhn≥0} ⇀ χ in L∞ weak-?,

and prove that

u = lim inf∗ uhn and u = lim sup∗ uhn

are repectively a L1 viscosity supersolution and subsolution of

ut = H[χ](x , t ,Du,D2u)|Du|.
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Convergence of approximation schemes for nonlocal equations

Proof of convergence

The proof of this fact is inspired by a new stability result of Barles (’06),
and taking into account weak convergence in time of the
Hamiltonians : the condition is∫ t

0
H[χn](x , s,p,A)ds −→

n→+∞

∫ t

0
H[χ](x , s,p,A)ds.

There are also links with the study of stochastic pde’s by Lions and
Souganidis (’98).
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Convergence of approximation schemes for nonlocal equations

Assumptions

Our assumptions are the following :

(H1) : Hh is monotone :

u ≤ v ⇒ u(x) + Hh[χ](x , kh,u) ≤ v(x) + Hh[χ](x , kh, v).

(H2) : Hh is stable : there exists L > 0 such that

‖uh‖∞ ≤ L independantly of χ.

(H3) : Hh is consistent with H : if χh ∈ L∞(RN × [0,T ]; [0,1]) is such
that χh ⇀ χ weakly-∗ in L∞(RN × [0,T ]; [0,1]) as h→ 0, then

h
[t/h]−1∑

l=0

Hh[χh](xh, lh, φ) −→
h→0

∫ t

0
H[χ](x , s,Dφ(x),D2φ(x)) ds

locally uniformly for t ∈ [0,T ].
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Convergence of approximation schemes for nonlocal equations

The main result is the following :

Theorem

Let (uh)h be defined by the scheme (3) satisfying assumptions (H1) to
(H3).

Then there exists a sequence hn → 0 and u ∈ C0(RN × [0,T ]; R) such
that uhn → u locally uniformly in RN × [0,T ], and u is a weak solution of
(2).

If (2) has a unique weak solution u, then the whole sequence (uh)
converges locally uniformly to u.

Application : We obtain convergence of the scheme proposed by
Alvarez, Carlini, Monneau and Rouy for dislocation dynamics.

A. Monteillet (Univ. Brest) Approx. schemes for nonlocal equations 19 / 30



Dislocation dynamics with a mean curvature term

Outline

1 Introduction

2 Convergence of approximation schemes for nonlocal equations

3 Dislocation dynamics with a mean curvature term

A. Monteillet (Univ. Brest) Approx. schemes for nonlocal equations 20 / 30



Dislocation dynamics with a mean curvature term

The equation

This is a joint work with N. Forcadel.

We consider the example of dislocation dynamics with a mean
curvature term :

Vx ,t = Hx ,t + c0(·, t) ? 1K (t)(x) + c1(x , t).

where Hx ,t = Tr(Ax ,t ) is the mean curvature of ∂K (t) at a point x .
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Dislocation dynamics with a mean curvature term

Level-set equation

The corresponding level-set equation is{
ut =

[
div
(

Du
|Du|

)
+ c0(·, t) ? 1{u(·,t)≥0}(x) + c1(x , t)

]
|Du|

u(·,0) = u0
(4)

Abscence of sign of c0 ⇒ Non-monotone problem.
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Dislocation dynamics with a mean curvature term

Known results

Forcadel :

Short time existence and uniqueness of a viscosity solution,
provided the initial shape is a graph or a Lipschitz curve.
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Dislocation dynamics with a mean curvature term

Main issues

1 Can we provide weak solutions to (4) ?

Yes, thanks to a general existence theorem.

2 Does the mean curvature term have a regularizing effect ?

We search for χ(·, t) in the particular form 1E(t) with some
regularity in time.
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Dislocation dynamics with a mean curvature term

Minimizing movements

We build E as a minimizing movement for our evolution law : following
Almgren, Taylor and Wang (1993), we discretize the equation

Vx ,t = Hx ,t + c0(·, t) ? 1K (t)(x) + c1(x , t) (5)

in time. Let h be a time step.

We are going to construct a sequence of sets Eh(k), for k ∈ N such
that kh ≤ T , whose evolution with k is a discretization of (5).
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Dislocation dynamics with a mean curvature term

Discretization

More precisely, we wish to construct a sequence of sets Eh(k) such
that for all x ∈ ∂Eh(k + 1),

±
dEh(k)(x)

h
= Hx ,(k+1)h + c0(·, (k + 1)h) ? 1Eh(k+1)(x) + c1(x , (k + 1)h),

where we take the + sign if x /∈ Eh(k), the − sign otherwise.

This corresponds to an implicit time discretization of

Vx ,t = Hx ,t + c0(·, t) ? 1K (t)(x) + c1(x , t).
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Dislocation dynamics with a mean curvature term

Corresponding gradient flow

We construct Eh(k + 1) by seeing the equation

±
dEh(k)(x)

h
= Hx ,(k+1)h + c0(·, (k + 1)h) ? 1Eh(k+1)(x) + c1(x , (k + 1)h)

as the Euler equation corresponding to the minimization of the
functionnal

E 7→ F(h, k + 1,E , Eh(k))

= P(E) +
1
h

∫
E∆Eh(k)

d∂Eh(k)(x) dx

−
∫

E

(
1
2

c0(·, (k + 1)h) ? 1E (x) + c1(x , (k + 1)h)

)
dx .
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Dislocation dynamics with a mean curvature term

Definition (Minimizing movement)
Let E0 ∈ P. We say that E : [0,T ]→ P is a minimizing movement
associated to F with initial condition E0 if there exist hn → 0+ and sets
Ehn (k) ∈ P for all k ∈ N verifying khn ≤ T , such that :

1 Ehn (0) = E0.

2 For any n, k ∈ N with (k + 1)hn ≤ T ,

Ehn (k + 1) minimizes the functional E → F(hn, k + 1,E ,Ehn (k)).

3 For any t ∈ [0,T ], Ehn ([t/hn])→ E(t) in L1(RN) as n→ +∞.
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Dislocation dynamics with a mean curvature term

Results

Under adapted regularity assumptions on c0 and c1, we obtained :

Theorem (Forcadel, M.)

Let E0 ∈ P with LN(∂E0) = 0. Then :
1 There exist Hölder continuous minimizing movements

associated to F with initial condition E0.

2 The corresponding solution u of{
ut =

[
div
(

Du
|Du|

)
+ c0(·, t) ? 1E(t)(x) + c1(x , t)

]
|Du|

u(·,0) = u0

is a weak solution of (4).
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Dislocation dynamics with a mean curvature term

The main ingredients of proof are :

A lower density bound for F-minimizers : P(E ,Bρ(x)) ≥ βρN−1.

A Distance-Volume comparison to estimate |Eh(k + 1)∆Eh(k)|.

A regularity result for F-minimizers, so that the Euler-Lagrange
equation corresponding to our minimizing procedure is the
discretized equation.
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