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Stanislav Smirnov has put a firm mathematical foundation under a burgeoning area of 
mathematical physics. He gave elegant proofs of two long-standing, fundamental 
conjectures in statistical physics, finding surprising symmetries in mathematical models 
of physical phenomena. 
 
Though Smirnov’s work is highly theoretical, it relates to some surprisingly practical 
questions. For instance, when can water flow through soil and when is it blocked? For it 
to flow, small scale pores in the soil must link up to provide a continuous channel from 
one place to another. This is a classic question in statistical physics, because the large-
scale behavior of this system (whether the water can flow through a continuous channel 
of pores) is determined by its small-scale, probabilistic behavior (the chance that at any 
given spot in the soil, there will be a pore).  
 
It’s also a natural question to model mathematically. Imagine each spot in the soil as 
lying on a grid or lattice, and color the spot blue if water can flow and yellow if it can’t. 
Determine the color of each spot by the toss of a coin (heads for yellow, tails for blue), 
using a coin that might be weighted rather than fair. If a path of blue spots crosses from 
one side of a rectangle to the other, the water can pass from one side to the other.  
 
Such “percolation models” behave in a remarkable way. For extreme values, the behavior 
is as you might expect: If the coin is heavily weighted against blue, the water almost 
certainly won’t flow, and if it’s heavily weighted toward blue, the water almost certainly 
will. But the probability of flow doesn’t change evenly as the percentage of blue spots 
increases. Instead, the water is almost certainly going to be blocked until the percentage 
of blue spots  reaches some threshold value, and once it does, the probability that the 
water will flow starts surging upward. This threshold is called the “critical point.” Abrupt 
change of behavior like this is a bit like what happens to water as it heats: suddenly, at a 
critical temperature, the water boils. For that reason, this phenomenon is commonly 
called a phase transition. 
 
But of course, real soil doesn’t come with neat, evenly spaced horizontal or vertical 
pores. So to apply this model to the real world, a couple of troublesome questions arise. 
First, how fine should the lattice grid be? Physicists are most interested in understanding 
processes at the molecular scale, in which case the grid should be very small indeed. 
Mathematicians then ask about the relationship between models with ever-smaller grids. 
Their hope is that as the grids get finer, the models will get closer and closer to one single 
model that effectively has an infinitely fine grid, called a “scaling limit.”  
 
To see why it’s not obvious that the scaling limit will exist, imagine choosing a particular 
percentage of blue spots for a lattice and calculating the probability that the pores will 
line up to form a crossing. Then make the grid size smaller and calculate it again. As the 



grids get finer, the crossing probabilities may get closer and closer to some number, the 
way the numbers 1.9, 1.99, 1.999, 1.9999… get closer and closer to 2. In that case, this 
number will be the crossing probability for the scaling limit. But it’s imaginable that the 
crossing probabilities will jump around and never converge toward a limit, like the 
sequence of numbers 2, 4, 2, 4, 2, 4… In that case, should the crossing probability for the 
scaling limit be 2 or 4? There’s no good answer, so we have to say that the scaling limit 
doesn’t exist.  
 
Another potentially problematic question is what shape lattice to use. Even if we restrict 
ourselves to two dimensions, there are many choices: square lattices, triangular lattices, 
rhombic lattices… Ideally, the model would be “universal,” so that the choice of lattice 
shape doesn’t matter, but that’s not obviously true. 
 
Physicists are pretty sure that neither of these potential problems is so bad. Using 
physical intuition, they’ve argued convincingly that the model will indeed approach a 
well-defined scaling limit as the grid gets finer. Furthermore, though the choice of lattice 
shape does affect the critical point, physicists have persuaded themselves that it won’t 
affect many of the other properties they’re interested in. 
 
Physicists have figured out even more about two-dimensional lattices, including finding 
evidence for a surprising and beautiful symmetry. Imagine taking a lattice of any shape 
and stretching it or squinching it but leaving the angles all the same. The Mercator 
projection of the globe is an example of this: Greenland is huge since distances are 
changed, but latitude and longitude lines nevertheless stay at right angles. Physicists have 
convinced themselves that if you transform two-dimensional percolation models in this 
way, it won’t change their scaling limits (as long as you’re near the critical points). Or, to 
use the technical term, they’re persuaded that scaling limits are “conformally invariant.” 
 
In 1992, John Cardy, a physicist at the University of Oxford, used this insight to achieve 
one of percolation theory’s big goals: a precise formula that calculates the crossing 
probabilities of the scaling limits of two-dimensional lattices near the critical point. The 
only problem was that although his physical arguments were persuasive, neither he nor 
anyone else could turn that physical intuition into a mathematical proof. 
 
In 2001, Smirnov put all this physical theory on a firm mathematical foundation. He 
proved that scaling limits are conformally invariant, though only for the triangular lattice 
(the shape that pennies, for example, fall into naturally when laid flat on a table and 
packed tightly together). In the process, he also proved the correctness of Cardy’s 
formula for triangular lattices. His proof used an approach independent of ones used 
earlier by physicists that provided fundamental new insights. It also provided a critical 
missing step in the theory of Schramm–Loewner Evolution, an important,  recently 
developed method in statistical physics.  
 
In another major achievement, Smirnov used similar methods to understand the Ising 
model, which describes phenomena including magnetism, gas movement, image 
processing, and ecology. Just as with percolation, the large-scale behaviors of these 



phenomena are determined by their probabilistic, small-scale behavior. Consider, for 
example, magnetism: The atoms in a piece of iron behave like miniature magnets, with 
the electrons moving around the nucleus creating a miniature magnetic field. The atoms 
try to pull their neighbors into the same alignment as their own. When enough atoms 
have their north poles pointing the same direction, the iron as a whole becomes magnetic. 
Mathematicians model this by visualizing the atoms as lying on the nodes of a lattice, 
with statistical rules that determine whether they’re aligned with their north poles 
pointing up or down. 
 
Like the percolation model, the Ising model undergoes a phase transition: As you heat the 
iron, the atoms vibrate more quickly, and if you heat it above a certain point, the 
vibrations are so strongly that neighboring atoms suddenly no longer hold one another in 
alignment and the piece as a whole begins to lose its magnetism. 
 
The same questions that mathematicians and physicists worry about in percolation also 
apply to the Ising model. The grid should be extremely small, since it’s operating on the 
atomic level. So as the grid mesh gets finer and finer, does the model converge toward 
some infinitely fine version, a scaling limit? Furthermore, how does the lattice shape 
affect the critical point and other properties? And what happens if you stretch or squish 
the lattice without changing the angles – does the scaling limit change? 
 
For this model, too, Smirnov was able to show that the models do indeed converge 
toward a scaling limit as the grid mesh gets finer and that they are unaffected by stretches 
and squishes, i.e., that they are conformally invariant. Later, with Dmitry Chelkak, he 
established universality, extending the results to a wide range of different lattices. He has 
also done significant work in analysis and dynamical systems. His work will continue to 
enrich both mathematics and physics in the future. 
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