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Ngô Bao Châu removed one of the great impediments to a grand, decades-long program 
to uncover hidden connections between seemingly disparate areas of mathematics. In 
doing so, he provided a solid foundation for a large body of theory and developed 
techniques that are likely to unleash a flood of new results. 
 
The path to Ngô’s achievement began in 1967, when the mathematician Robert 
Langlands had a mind-bogglingly bold vision of a sort of mathematical wormhole 
connecting fields that seemed to be light-years apart. His proposal was so ambitious and 
unlikely that when he first wrote of it to the great number theorist André Weil, he began 
with this sheepish note: “If you are willing to read [my letter] as pure speculation I would 
appreciate that; if not — I am sure you have a waste basket handy.” Langlands then laid 
out a series of dazzling conjectures that have proven to be a roadmap for a large area of 
research ever since.  
 
The great majority of those conjectures remain unproven and are expected to occupy 
mathematicians for generations to come. Even so, the progress on the program so far has 
been a powerful engine for new mathematical results, including Andrew Wiles’ proof of 
Fermat’s Last Theorem and Richard Taylor’s proof of the Sato-Tate conjecture. The full 
realization of Langlands’ program would unify many of the fields of modern 
mathematics, including number theory, group theory, representation theory, and algebraic 
geometry.  
 
Langlands’ vision was of a bridge across a division in mathematics dating all the way 
back to Euclid’s time, that between magnitude and multitude. Magnitudes are the 
mathematical form of butter, a continuous smear of stuff that can be divided up into 
pieces as small as you please. Lines and curves, planes, the space we live in, and even 
higher-dimensional spaces are all magnitudes, and they are commonly studied with the 
tools of geometry and analysis. Multitudes, on the other hand, are like beans, discrete 
objects that can be put in piles but can’t be split without losing their essence. The whole 
numbers are the canonical example of multitudes, and they are studied with the tools of 
number theory. Langlands predicted that certain numbers that arise in analysis – 
specifically, the eigenvalues of certain operators on differential forms on particular 
Riemannian manifolds, called automorphic forms – were actually a code that, if 
unraveled, would classify fundamental objects in the arithmetic world.  
  
One of the tools developed from the Langlands program is the “Arthur-Selberg trace 
formula,” an equation that shows precisely how geometric information can calculate 
arithmetic information. That is valuable in itself, and furthermore, is a building block in 
proving Langlands’ Principle of Functoriality, one of the great pillars of his program. But 



Langlands ran across an annoying stumbling block in trying to use the trace formula.  He 
kept encountering complicated finite sums that clearly seemed to be equal, but he 
couldn’t quite figure out how to show it. It seemed like a straightforward problem, one 
that could be solved with a bit of combinatorial fiddling, so he called it a “lemma” –  the 
term for a minor but useful result – and assigned it to a graduate student.  
 
When the graduate student couldn’t prove it, he tried another. Then he worked on it 
himself. Then he consulted with other mathematicians. At the same time as everyone 
continued to fail to prove it, the critical need for the result became increasingly clear. So 
the problem came to have a slightly grander title: the “Fundamental Lemma.” 
 
After three decades of work, only a few special cases had yielded to proof. The lack of a 
proof was such a roadblock to progress that many mathematicians had begun simply 
assuming it was true and developing results that depended upon it, creating a huge body 
of theory that would come crashing down if it turned out to be false. 
 
Ngô Bao Châu was the one to finally break the problem open. The complicated identities 
in the Fundamental Lemma, he realized, could be seen as arising naturally out of 
sophisticated mathematical objects known as Hitchen fibrations.  His approach was 
entirely novel and unexpected: Hitchen fibrations are purely geometric objects that are 
close to mathematical physics, nearly the last thing anyone expected to be relevant to this 
problem in the purest of pure math.  
 
But it was instantly clear that he’d made a profound connection. His approach turned the 
annoying, fiddly complexity of the Fundamental Lemma into a simple, natural statement 
about Hitchen fibrations. Even before he’d managed to complete the proof, he’d achieved 
something even more impressive: He’d created genuine understanding. 
 
Furthermore, by putting the problem in this much bigger framework, Ngô gave himself 
powerful new tools to assault it with. In 2004, he proved some important and difficult 
special cases working with his former thesis advisor Gérard Laumon, and in 2008, using 
his new methods, he cracked the problem in its full generality. 
 
Ngô’s methods are so novel that mathematicians expect them to break open a number of 
other problems as well. A prime target is another piece of Langlands’ program, his 
“theory of endoscopy.”  
 
His techniques might even point the way toward a proof of the full Principle of 
Functoriality, which would be close to a full realization of Langlands’ original vision. 
Langlands himself, who is now over 70 years old and still hard at work, has developed a 
highly speculative but enticing approach to the problem. It is still far from clear that these 
ideas will lead to a proof, but if they do, they will have to rely on the kinds of geometric 
ideas that Ngo has introduced. 
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