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Elon Lindenstrauss has developed extraordinarily powerful theoretical tools in ergodic 
theory, a field of mathematics initially developed to understand celestial mechanics. He 
then used them, together with his deep understanding of ergodic theory, to solve a series 
of striking problems in areas of mathematics that are seemingly far afield. His methods 
are expected to continue to yield rich insights throughout mathematics for decades to 
come. 
 
Ergodic theory studies dynamical systems, which are simply mathematical rules that 
describe how a system changes over time. So, for example, a dynamical system might 
describe a billiard ball ricocheting around a frictionless, pocketless billiard table. The ball 
will travel in a straight line until it hits the side of the table, which it will bounce off of as 
if from a mirror. If the table is rectangular, this dynamical system is pretty simple and 
predictable, because a ball sent any direction will end up bouncing off each of the four 
walls at a consistent angle. But suppose, on the other hand, that the billiard table has 
rounded ends like a stadium. In that case, a ball from almost any starting position headed 
in almost any direction will shoot all over the entire stadium at endlessly varying angles. 
Systems with this kind of complicated behavior are called “ergodic.” 
 
The way that mathematicians pin down this notion that the trajectories spread out all over 
the space is through the notion of “measure invariance.” A measure can be thought of as 
a more flexible way to compute area, and having an invariant measure essentially assures 
that if two regions of the space in some sense have equal areas, points will travel into 
them the same percentage of the time. By contrast, in the rectangular table (which of 
course is not ergodic), the center will get very little traffic in most directions.  
 
In many dynamical systems, there is more than one invariant measure, that is, more than 
one way of computing area for which almost all the trajectories will go into equal areas 
equally often. In fact, there are often infinitely many invariant measures. What 
Lindenstrauss showed, however, is that in certain circumstances, there can be only a very 
few invariant measures. This turns out to be an extremely powerful tool, a kind of 
hammer that can break hard problems open. 
 
Lindenstrauss then adroitly wielded his hammer to crack some hard problems indeed. 
One example of this is in an area called “Diophantine approximations,” which is about 
finding rational numbers that are usefully close to irrational ones. Pi, for example, can be 
approximated pretty well as 22/7. The rational number 179/57 is a bit closer, but because 
its denominator is so much larger, it’s not as convenient an approximation. In the early 
19th century, the German mathematician Johan Dirichlet proposed one possible standard 
for judging the quality of an approximation: The imprecision of a rational approximation 
p/q should be less than

 

1
q 2 . He then went on to show, in a not very difficult proof, that 

there are infinitely many approximations to any irrational number that meet this standard. 



(To put this in formula form, he showed that for any real number α, there are infinitely 
many integers p and q such that  

 

α − p
q < 1

q 2 .) 
 
Eighty years ago, the British mathematician John Edensor Littlewood proposed an 
analogue to Dirichlet’s statement to approximate two irrational numbers at once: It 
should be possible, he figured, to find approximations p/q to α and r/q to β so that the 
product of the imprecision of the two approximations would be as small as you please. 
(In formula form, the claim is that for any real numbers α and β and any tiny positive 
quantity ε you like, there will be approximations p/q to α and r/q to β so that 

 

α − p
q × β − r

q < ε
q 3 .) He gave the problem to his graduate students, thinking it 

shouldn’t be that much harder than Dirichlet’s proof. But the Littlewood Conjecture 
turned out to be extraordinarily difficult, and until recently, no substantial progress had 
been made on it.  
 
Then Lindenstrauss brought his ergodic theory tools to the problem. Ergodic theory 
might seem an odd choice for a problem that doesn’t involve dynamical systems or time, 
but such unlikely pairings are sometimes the most powerful. Here’s one way of 
reformulating Littlewood’s problem to see a connection: First imagine a unit square, and 
glue the top edge to the bottom edge to make a cylinder. Now glue the right edge to the 
left edge and you’ll get a shape called a torus that looks like a donut. You can roll up the 
entire coordinate plane to this same shape by gluing any point (x, y) to the point whose x-
coordinate is the fractional part of x and whose y-coordinate is the fractional part of y. 
This torus is the space of our dynamical system. We can then define a transformation by 
taking any point (x, y) to another point (x + α, y + β). If α and β are irrational (or more 
precisely, not rationally related), this dynamical system will be ergodic. The Littlewood 
Conjecture then becomes the claim that you can make these trajectories suitably close to 
the origin by applying the transformation enough times. The number of times you apply 
the transformation becomes the denominator of the fractions approximating α and β.  
 
Using a reformulation of the Littlewood Conjecture in terms of a more complex 
dynamical system, Lindenstrauss, together with Manfred Einsiedler and Anatole Katok, 
proved almost the entire conjecture: They showed that if there are any pairs of numbers 
for which the conjecture is false, there are only a very few of them, a negligible portion 
of them all.  
 
Another example of the power of Lindenstrauss’s work is his proof of the first nontrivial 
case of the arithmetic quantum unique ergodicity conjecture. Ergodic systems come up 
frequently in physics, because as soon as you have three bodies interacting, for example, 
the system starts to behave in a somewhat ergodic fashion. But if those interactions 
happen at the quantum scale, you can’t describe them with the ordinary tools of ergodic 
theory, because quantum theory doesn’t allow for well-defined paths of points at well-
defined positions; instead, you can only consider the probability that a point will exist in 
a particular position at a particular time. Analyzing such systems mathematically has 
proven extraordinarily difficult, and physicists have had to rely on numerical simulations 
alone, without a firm mathematical underpinning. 
 



The quantum unique ergodicity conjecture says, roughly, that if you calculate area using 
the measure that’s natural in classical dynamics, then as the energy of the system goes up, 
this probability distribution becomes more evenly distributed over the space. 
Furthermore, this measure is the only one for which that is true. Lindenstrauss was able to 
prove this in an arithmetic context for particular kinds of dynamical systems, creating one 
of the first major, rigorous advances in the theory of quantum chaos. 
 
These are just two examples of Lindenstrauss’s remarkable results. His methods, tools 
and insights are likely to yield many more results in the years to come. 
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