
Cédric Villani 
 
Citation: “For his proofs of nonlinear Landau damping and convergence to  
equilibrium for the Boltzmann equation.”  
 
Cédric Villani has provided a deep mathematical understanding of a variety of physical 
phenomena. At the center of much of his work is his profound mathematical 
interpretation of the physical concept of entropy, which he has applied to solve major 
problems inspired by physics. Furthermore, his results have fed back into mathematics, 
enriching both fields though the connection. 
 
Villani began his mathematical career by re-examining one of the most shocking and 
controversial theories of 19th century physics. In 1872, Ludwig Boltzmann studied what 
happens when the stopper is removed on a gas-filled beaker and the gas spreads around 
the room. Boltzmann explained the process by calculating the probability that a molecule 
of gas would be in a particular spot with a particular velocity at any particular moment – 
before the atomic theory of matter was widely accepted. Even more shockingly, though, 
his equation created an arrow of time. 
 
The issue was this: When molecules bounce off each other, their interactions are 
regulated by Newton’s laws, which are all perfectly time-reversible; that is, in principle, 
we could stop time, send all the molecules back in the direction they’d come from, and 
they would zip right back into the beaker. But Boltzmann’s equation is not time-
reversible. The molecules almost always go from a state of greater order (e.g., enclosed in 
the beaker) to less order (e.g., spread around the room). Or, more technically, entropy 
increases. 
 
Over the next decades, physicists reconciled themselves to entropy’s emergence from 
time-reversible laws, and indeed, entropy became a key tool in physics, probability 
theory, and information theory. A key question remained unanswered, though: How 
quickly does entropy increase? Experiments and numerical simulations could provide 
rough estimates, but no deep understanding of the process existed. 
 
Villani, together with his collaborators Giuseppe Toscani and Laurent Desvillettes, 
developed the mathematical underpinnings needed to get a rigorous answer, even when 
the gas starts from a highly ordered state that has a long way to go to reach its disordered, 
equilibrium state. His discovery had a completely unexpected implication: though 
entropy always increases, sometimes it does so faster and sometimes slower. 
Furthermore, his work revealed connections between entropy and apparently unrelated 
areas of mathematics, such as Korn’s inequality from elasticity theory. 
 
After this accomplishment, Villani brought his deep understanding of entropy to on 
another formerly controversial theory. In 1946, the Soviet physicist Lev Davidovich 
Landau made a mind-bending claim: In certain circumstances, a phenomenon can 
approach equilibrium without increasing entropy. 
 



In a gas, the two phenomena always go together. Gas approaches equilibrium by 
spreading around a room, losing any order it initially had and increasing entropy as much 
as possible. But Landau argued plasma, a gas-like form of matter which contains so much 
energy that the electrons get ripped away from the atoms, was a different story. In 
plasma, the free-floating charged particles create an electrical field which in turn drives 
their motion. This means that unlike particles in a gas, which affect the motion only of 
other particles they happen to smash against, plasma particles influence the motion of far-
away particles they never touch as well. That means that Boltzmann’s equation for gases 
doesn’t apply – and the Vlasov-Poisson equation that does is time-reversible, and hence 
does not involve an increase in entropy. 
 
Nevertheless, plasma, like gas, spreads out and approaches an equilibrium state. It was 
believed that this happened only because of the collisions between atoms. But Landau 
argued that even if there were no collisions, the plasma would move toward equilibrium 
because of a decay in the electric field. He proved it, too – but only for a simplified linear 
approximation of the Vlasov-Poisson equation.  
 
Despite a huge amount of study over the next six decades, little progress was made on 
understanding how this equilibrium state comes about or proving Landau’s claim for the 
full Vlasov-Poisson equation. Last year, Villani, in collaboration with Clément Mouhot, 
finally came to a deep understanding of the process and proved Landau right.  
 
A third major area of Villani’s work initially seemed to have nothing to do with entropy – 
until Villani found deep connections and transformed the field. He became involved in 
optimal transport theory, which grew out of one of the most practical of questions: 
Suppose you have a bunch of mines and a bunch of factories, in different locations, with 
varying costs to move the ore from each particular mine to each particular factory. What 
is the cheapest way to transport the ore?  
 
This problem was first studied by the French mathematician Gaspard Monge in 1781 and 
rediscovered by the Russian mathematician Leonid Kantorovich in 1938. Kantorovich’s 
work on this problem  blossomed into an entire field (linear programming), won him the 
Nobel Prize in economics in 1975, and spread into a remarkable array of areas, including 
meteorology, dynamical systems, fluid mechanics, irrigation networks, image 
reconstruction, cosmology, the placement of reflector antennas – and, in the last couple of 
decades, mathematics. 
 
Villani and Felix Otto made one of the critical connections when they realized that gas 
diffusion could be understood in the framework of optimal transport. An initial 
configuration of gas particles can be seen as the mines, and a later configuration can be 
seen as the factories. (More precisely, it’s the probability distribution of the particles in 
each case.) The further the gas particles have to move to go from one configuration to the 
other, the higher the cost.  
 
One can then imagine each of these possible configurations as corresponding to a point in 
an abstract mountainous landscape. The distance between two points is defined as the 



optimal transport cost, and the height of each point is defined by the entropy (with low 
points having high entropy). This gives a beautiful way of understanding what happens as 
gas spreads out in a room: It is as though the gas rolls down the slopes of this abstract 
terrain, its configurations changing as specified by the points on the downward path. 
 
Now suppose that a fan is blowing when you open the beaker of gas, so that the gas 
doesn’t spread uniformly as it diffuses. Mathematically, this can be modeled by 
considering the space in which the gas is spreading to be distorted or curved. Villani and 
Otto realized that the curvature of the space where the gas spreads would translate into 
the topography of the abstract landscape. This connection allowed them to apply the rich 
mathematical understanding of curvature (in particular, Ricci curvature, which was 
critical in the recent solution of the Poincaré conjecture) to answer questions about 
optimal transport.  
 
Furthermore, Villani and John Lott were able to take advantage of these links with 
optimal transport to further develop the theory of curvature. For example, mathematicians 
hadn’t had a way of defining Ricci curvature at all in some situations, like at a sharp 
corner. Villani and Lott (and simultaneously, using complementary tools, Karl-Theodor 
Sturm) were able to use the connection with optimal transport to offer a definition and 
push the mathematical understanding of curvature to new, deeper levels. This depth of 
understanding and development of novel connections between different areas is typical of 
Villani’s work. 
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