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Seriation

The Seriation Problem.

� Pairwise similarity information Aij on n variables.

� Suppose the data has a serial structure, i.e. there is an order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Recover π?
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Seriation

The Continuous Ones Problem.

� We’re given a rectangular binary {0, 1} matrix.

� Can we reorder its columns so that the ones in each row are contiguous (C1P)?

Input matrix Ordered C1P matrix CTC (overlap)

Lemma [Kendall, 1969]

Seriation and C1P. Suppose there exists a permutation such that C is C1P, then
CΠ is C1P if and only if ΠTCTCΠ is an R-matrix.
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Shotgun Gene Sequencing

C1P has direct applications in shotgun gene sequencing.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp), which are fully sequenced.

� Reorder the reads to recover the genome.

(from Wikipedia. . . )
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A Spectral Solution

Spectral Seriation. Define the Laplacian of A as LA = diag(A1)−A, the
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Spectral Solution

A solution in search of a problem. . .

� What if the data is noisy and outside the perturbation regime? The spectral
solution is only stable when the noise ‖∆L‖2 ≤ (λ2 − λ3)/2.

� What if we have additional structural information?

Write seriation as an optimization problem?
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Seriation and 2-SUM

Combinatorial Solution. Solving 2-SUM

min
π∈P

n∑
i,j=1

Aπ(i),π(j)(i− j)2 = πTLAπ (1)

and A is a conic combination of CUT (one flat block) matrices.

Laplacian operator is linear, yπ monotonic optimal for all CUT components.

Proposition [Fogel et al., 2013]

Seriation and 2-SUM. Suppose C ∈ Sn is a {0, 1} pre-R matrix and yi = i for
i = 1, . . . , n. If Π is such that ΠCΠT is an R-matrix, then the permutation π
solves the 2-SUM combinatorial minimization problem (1) for A = C2.

Recently extended by Laurent and Seminaroti [2014] to the product of R and
anti-R Toeplitz matrices.
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Convex Relaxation

� Let Dn the set of doubly stochastic matrices, where

Dn = {X ∈ Rn×n : X > 0, X1 = 1, XT1 = 1}

is the convex hull of the set of permutation matrices.

� Notice that P = D ∩O, i.e. Π permutation matrix if and only Π is both
doubly stochastic and orthogonal.

Solve
minimize Tr(Y TΠTLAΠY )− µ‖PΠ‖2F
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1,
Π ≥ 0,

(2)

in the variable Π ∈ Rn×n, where P = I− 1
n11

T and Y ∈ Rn×p is a matrix whose
columns are small perturbations of g = (1, . . . , n)T .
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Convex Relaxation

Other relaxations.

� A lot of work on relaxations for orthogonality constraints, e.g. SDPs in
[Nemirovski, 2007, Coifman et al., 2008, So, 2011].

� Simple idea: QTQ = I is a quadratic constraint on Q, lift it. This yields a
O(
√
n) approximation ratio.

� We could also use O(
√

log n) approximation bounds for MLA [Even et al.,
2000, Feige, 2000, Blum et al., 2000, Rao and Richa, 2005, Feige and Lee,
2007, Charikar et al., 2010].

� All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.
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Semi-Supervised Seriation

Convex Relaxation.

� Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a ≤ π(i)− π(j) ≤ b is written a ≤ eTi Πg − eTj Πg ≤ b.

which are linear constraints in Π.

� Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

◦ Sample monotonic random vectors u.

◦ Recover a permutation by reordering Du.

� Algorithms. Large QP. [Lim and Wright, 2014] recently used results by
[Goemans, 2014] on extended formulations of the permutahedron to
significantly reduce problem dimension, from O(n2) to O(n log2 n).
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Ranking & pairwise comparisons

Given n items, and pairwise comparisons

itemi � itemj, for (i, j) ∈ S,

find a global ranking π(i) of these items

itemπ(1) � itemπ(2) � . . . � itemπ(n)
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Ranking & pairwise comparisons

Pairwise comparisons?

� Some data sets naturally produce pairwise comparisons, e.g. tournaments,
ecommerce transactions, etc.

� Comparing items is often more intuitive than ranking them directly.

Hot or Not? Rank images by ”hotness”. . .
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Ranking & pairwise comparisons

Classical problem, many algorithms (roughly sorted by increasing complexity)

� Scores. Borda, Elo rating system (chess), TrueSkill [Herbrich et al., 2006], etc.

� Spectral methods. [Saaty, 1977, Dwork et al., 2001, Negahban et al., 2012]

� MLE based algorithms. [Bradley and Terry, 1952, Luce, 1959, Herbrich
et al., 2006]

� Learning to rank. Learn scoring functions.

See forthcoming book by Milan Vojnovic on the subject. . .

Alex d’Aspremont Paris VI, Apr. 2015. 15/38



Ranking & pairwise comparisons

Various data settings. . .

� A partial subset of preferences is observed.

� Preferences are measured actively [Ailon, 2011, Jamieson and Nowak, 2011].

� Preferences are fully observed but arbitrarily corrupted.

� Repeated noisy observations.

Various performance metrics. . .

� Minimize the number of disagreements i.e. # edges inconsistent with the
global ordering, e.g. PTAS for min. Feedback Arc Set (FAS) [Kenyon-Mathieu
and Schudy, 2007]

� Maximize likelihood given a model on pairwise observations, e.g. [Bradley
and Terry, 1952, Luce, 1959]

� Convex loss in ranking SVMs

� . . .
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Scores

� Borda count. Dates back at least to 18th century. Players are ranked
according to the number of wins divided by the total number of comparisons
[Ammar and Shah., 2011, Wauthier et al., 2013].

� Also fair-bets, invariant scores, Masey, Maas, Colley, etc.

� Elo rating system. (Chess, ∼1970)

◦ Players have skill levels µi.

◦ Probability of player i beating j given by H(µi − µj) (e.g. Gaussian CDF).

◦ After each game, skills updated to

µi := µi + c(wij −H(µi − µj))

wij ∈ {0, 1}, H(·) e.g. Gaussian CDF. Sum of all skills remains constant,
skills are transferred from losing players to winning ones.

� TrueSkill rating system. [Herbrich et al., 2006] Similar in spirit to Elo, but
player skills are represented by a Gaussian distribution.

Very low numerical cost.
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Spectral algorithms

Spectral algorithms. Markov chain on a graph.

Similar to HITS [Kleinberg, 1999] or Pagerank [Page et al., 1998]. . .

� A random walk goes through a graph where each node corresponds to an item
or player to rank.

� Likelihood of going from i to j depends on how often i lost to j, so neighbors
with more wins will be visited more frequently.

� Ranking is based on asymptotic frequency of visits, i.e. on the stationary
distribution.

Simple extremal eigenvalue computation, low complexity (roughly O(n2 log n) in
the dense case). See Dwork et al. [2001], Negahban et al. [2012] for more details.
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Maximum Likelihood Estimation

Model pairwise comparisons. [Bradley and Terry, 1952, Luce, 1959, Herbrich
et al., 2006]

� Comparisons are generated according to a generalized linear model (GLM).

� Repeated observations, independent. Item i is preferred over item j with
probability

Pi,j = H(νi − νj)
where

◦ ν ∈ Rn is a vector of skills.

◦ H : R→ [0, 1] is an increasing function.

◦ H(−x) = 1−H(x), and limx→−∞H(x) = 0 and limx→∞H(x) = 1.

H(·) is a CDF. Logistic in the Bradley-Terry-Luce model: H(x) = 1/(1 + e−x).
Also: Gaussian (Thurstone), Laplace, etc.

Estimate ν by maximizing likelihood. (using e.g. fixed point algo)
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Today: Ranking using Seriation

� Produce similarity matrices from pairwise preferences

� Use seriation to recover the ranking.

A new class of spectral algorithms for ranking.
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From Ranking to Seriation

Similarity matrices from pairwise comparisons.

� Given pairwise comparisons C ∈ {−1, 0, 1}n×n with

Ci,j =

 1 if i is ranked higher than j
0 if i and j are not compared or in a draw
−1 if j is ranked higher than i

� Define the pairwise similarity matrix Smatch as

Smatch
i,j =

n∑
k=1

(
1 + Ci,kCj,k

2

)
.

� Smatch
i,j counts the number of matching comparisons between i and j with

other reference items k.

In a tournament setting: players that beat the same players and are beaten by the
same players should have a similar ranking. . .
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From Ranking to Seriation

[Fogel et al., 2014]

Similarity from preferences. Given all comparisons Ci,j ∈ {−1, 0, 1} between
items ranked linearly, the similarity matrix Smatch is a strict R-matrix and

Smatch
ij = n− |i− j|

for all i, j = 1, . . . , n.

This means that, given all pairwise pairwise comparions, spectral clustering on
Smatch will recover the true ranking.
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Robustness

[Fogel et al., 2014]

Robustness to corrupted entries.

� Given all comparisons Cs,t ∈ {−1, 1} between items ordered 1, . . . , n.

� Suppose the sign of one comparison Ci,j is switched, with i < j.

If j − i > 2 then Smatch remains a strict-R matrix.

In this case, the score vector w has ties between items i and i+ 1 and items j
and j − 1.
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Robustness

A graphical argument. . .

Shift by +1 

Shift by -1 

i i+1 jj-1

i

i+1

j
j-1

Strict R-constraints 

The matrix of pairwise comparisons C (far left).

The corresponding similarity matrix Smatch is a strict R-matrix (center left).

The same Smatch similarity matrix with comparison (3,8) corrupted (center right).
With one corrupted comparison, Smatch keeps enough strict R-constraints to
recover the right permutation. (far right).
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Robustness

We can go bit further. . . .

C Smatch

� Form Smatch from consistent, ordered comparisons.

� Much simpler to analyze than MC methods: using results from [Von Luxburg
et al., 2008], we can compute its Fiedler vector asymptotically.

� The Fiedler vector of the nonsymmetric normalized Laplacian is also given
by xi = c i, i = 1, . . . , n where c > 0, for finite n.

� The spectral gap between the first three eigenvalues can be controlled.
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Robustness

Asymptotically: Smatch/n→ k(x, y) = 1− |x− y| for x, y ∈ [0, 1].

� The degree function is then d(x) =
∫ 1

0
k(x, y)dy = −x2 + x+ 1/2. The range

of d(x) is [0.5, 0.75] and the bulk of the spectrum is contained in this interval.

� We can also show that the second smallest eigenvalues of the unnormalized
Laplacian satisfies λ2 < 2/5, which is outside of this range.

� The Fiedler vector f with eigenvalue λ satisfies

f ′′(x)(1/2− λ+ x− x2) + 2f ′(x)(1− 2x) = 0.

Von Luxburg et al. [2008] then show that the unnormalized Laplacian converges
and that its second eigenvalue is simple. Idem for the normalized Laplacian.

This spectral gap means we can use perturbation analysis to study recovery.
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Robustness
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Sample optimality

[Fogel et al., 2014]

Sample optimality. Suppose we observe n
1
2µνn log3 n consistent comparisons,

then
‖π̃ − π‖∞ ≤ cn/µ,

with probability greater than 1 − 2
nν/4−1

, where µ controls precision and c > 0 is
an absolute constant.

Work in progress. . .

Coupon collector: we need at least O(n log n).
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Sample optimality

Proof sketch.

� Bound the Laplacian of the residual ||LR|| ≤ ||DR||+ ||R|| where DR is the
degree matrix of R.

� Bound ||R|| and ||DR|| by a function of n and q, with ||LR|| ≤ h(n, q).

� Show |λ̃3 − λ2| > |λ3 − λ2|/2 and |λ̃1 − λ2| > |λ1 − λ2|/2 so matrix
perturbation results yield

||f − f̃ ||2 ≤
√

2
||L̃− L||2

min(λ2 − λ1, λ3 − λ2)
= O(||LR||2/n2).

� Show eigenvector bound ‖f̃ − f‖∞ = O(‖f̃ − f‖2
√

log n/n).
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Sample optimality

� This translates into a bound on the ranking

‖π̃ − π‖∞ = O(‖f̃ − f‖∞n3/2).

� Put all pieces together to deduce that

‖π̃ − π‖∞ = O(‖f̃ − f‖∞n3/2)

= O(‖f̃ − f‖2

√
log n

n
n3/2)

= O(||LR||n−2n
√

log n)

= O

(
h(n, q)

√
log n

n

)
.

When the sampling probability q ≥ µν n1
2n log3 n, we can show

h(n, q) ≤ n2/
√

log n with high probability.
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Numerical results
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red line), row-sum (PS, [Wauthier et al., 2013] dashed blue line), rank
centrality (RC [Negahban et al., 2012] dashed green line), and maximum
likelihood (BTL [Bradley and Terry, 1952], dashed magenta line).
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Numerical results
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Numerical results
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Football teams

Official Row-sum RC BTL SerialRank Semi-Supervised

Man City (86) Man City Liverpool Man City Man City Man City
Liverpool (84) Liverpool Arsenal Liverpool Chelsea Chelsea
Chelsea (82) Chelsea Man City Chelsea Liverpool Liverpool
Arsenal (79) Arsenal Chelsea Arsenal Arsenal Everton
Everton (72) Everton Everton Everton Everton Arsenal
Tottenham (69) Tottenham Tottenham Tottenham Tottenham Tottenham
Man United (64) Man United Man United Man United Southampton Man United
Southampton (56) Southampton Southampton Southampton Man United Southampton
Stoke (50) Stoke Stoke Stoke Stoke Newcastle
Newcastle (49) Newcastle Newcastle Newcastle Swansea Stoke
Crystal Palace (45) Crystal Palace Swansea Crystal Palace Newcastle West Brom
Swansea (42) Swansea Crystal Palace Swansea West Brom Swansea
West Ham (40) West Brom West Ham West Brom Hull Crystal Palace
Aston Villa (38) West Ham Hull West Ham West Ham Hull
Sunderland (38) Aston Villa Aston Villa Aston Villa Cardiff West Ham
Hull (37) Sunderland West Brom Sunderland Crystal Palace Fulham
West Brom (36) Hull Sunderland Hull Fulham Norwich
Norwich (33) Norwich Fulham Norwich Norwich Sunderland
Fulham (32) Fulham Norwich Fulham Sunderland Aston Villa
Cardiff (30) Cardiff Cardiff Cardiff Aston Villa Cardiff

Ranking of teams in the England premier league season 2013-2014.
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Numerical results

DNA. Reorder the read similarity matrix to solve C1P on 250 000 reads from
human chromosome 22.

# reads×# reads matrix measuring the number of common k-mers between
read pairs, reordered according to the spectral ordering.

The matrix is 250 000 × 250 000, we zoom in on two regions.
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Numerical results

DNA. 250 000 reads from human chromosome 22.
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Recovered read position versus true read position for the spectral solution and
the spectral solution followed by semi-supervised seriation.

We see that the number of misplaced reads significantly decreases in the
semi-supervised seriation solution.
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Conclusion

Very diverse set of algorithmic solutions. . .

� Here: new class of spectral methods based on seriation results.

� Exact recovery results are easy to derive.

� Almost completely explicit perturbation analysis.

� More robust in certain settings.

NIPS 2014, ArXiv update very soon. . .
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