Viscosity Solutions of Fully Nonlinear Path Dependent PDEs

Nizar TOUZI

Ecole Polytechnique France

Institut Henri Poincaré

20 décembre 2012

Parabolic nonlinear path-dependent PDEs

•
$$\Omega = \{\omega \in C^0([0, T], \mathbb{R}^d), \omega_0 = 0\}, \|\omega\| = \sup_{t \leq T} |\omega_t|$$

 \bullet B canonical process, $\mathbb F$ the corresponding filtration

Our objective : wellposedness theory for the equation :

$$\left\{ \begin{array}{ll} -\partial_t u - G(., u, \partial_\omega u, \partial^2_{\omega\omega} u) \right\}(t, \omega) = 0 \quad \text{for} \quad t < T, \ \omega \in \Omega \\ u(T, \omega) = \xi(\omega) \end{array} \right.$$

where $\xi(\omega) = \xi((\omega_s)_{s \leq T})$ and $G(t, \omega, y, z, \gamma)$ is \mathbb{F} -prog. meas.

$$G:[0,T]\times\Omega\times\mathbb{R}\times\mathbb{R}^d\times\mathbb{S}^d\longrightarrow\mathbb{R},\quad\searrow\quad\text{in }\gamma,$$

and the unknown process $u(t, \omega) = u(t, \omega_{t \wedge .})$ is prog. meas.

Previous literature

- Sobolev solutions :
 - Semilinear case : Pardoux and Peng (1990) and all subsequent literature on Backward SDEs
 - Fully nonlinear : Cheridito, Soner, T. and Victoir (2006), Soner, T. and Zhang (2010), second order backward SDEs
- \bullet Classical solutions for linear PPDE : Dupire 2009, Cont and Fournie (2010)
- Viscosity solutions :
 - Lukuyanov 2007 : First order path-dependent PDE
 - Ekren, T. and Zhang : this presentation

Time and space derivatives

• Time derivative introduced by Dupire :

$$\partial_t \varphi(t,\omega) := \lim_{h \searrow 0} rac{arphi(t+h,\omega_{t\wedge .}) - arphi(t,\omega)}{h} \quad ext{if exists}$$

• Space derivatives : $\varphi(t, \omega) \in C^{1,2}$ if there exist continuous process, denoted $\partial_{\omega}\varphi$, $\partial^2_{\omega\omega}\varphi$, such that Itô's formula holds :

$$d\varphi = \partial_t \varphi dt + \frac{1}{2} \partial^2_{\omega\omega} \varphi : d\langle B \rangle + \partial_\omega \varphi \cdot dB (...)$$

Remark Dupire derivatives, Malliavin calculus

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Time and space derivatives

• Time derivative introduced by Dupire :

$$\partial_t \varphi(t,\omega) := \lim_{h\searrow 0} rac{arphi(t+h,\omega_{t\wedge .}) - arphi(t,\omega)}{h} \quad ext{if exists}$$

• Space derivatives : $\varphi(t, \omega) \in C^{1,2}$ if there exist continuous process, denoted $\partial_{\omega}\varphi$, $\partial^2_{\omega\omega}\varphi$, such that Itô's formula holds :

$$d\varphi = \partial_t \varphi dt + \frac{1}{2} \partial^2_{\omega\omega} \varphi : d\langle B \rangle + \partial_\omega \varphi \cdot dB$$
 (...)

Remark Dupire derivatives, Malliavin calculus

A (1) > A (2) > A

Example : Conditional expectation and Heat equation

- $\bullet \ \mathbb{P}_0$: Wiener measure on Ω
- By using the r.c.p.d. define for $\xi \in \mathbb{L}^1(\mathbb{P}_0)$:

 $u(t,\omega):=\mathbb{E}^{\mathbb{P}_0^{t,\omega}}ig[\xiig] \hspace{1mm} ext{for all} \hspace{1mm} t\leq T, \hspace{1mm} \omega\in\Omega$

• Assume that $u \in C^{1,2}$, then :

$$du_t = (\partial_t u_t + rac{1}{2} \partial^2_{\omega \omega} u_t) dt + \partial_\omega u_t dB_t, \ \mathbb{P}_0 - ext{a.s.}$$

Since u is a \mathbb{P}_0 -martingale, we obtain the heat equation :

$$\partial_t u + rac{1}{2} \partial^2_{\omega\omega} u = 0$$
 and $u_T = \xi$

(D) (A) (A) (A) (A)

Example : Conditional expectation and Heat equation

- $\bullet \ \mathbb{P}_0$: Wiener measure on Ω
- By using the r.c.p.d. define for $\xi \in \mathbb{L}^1(\mathbb{P}_0)$:

 $u(t,\omega):=\mathbb{E}^{\mathbb{P}_0^{t,\omega}}ig[\xiig] \hspace{1mm} ext{for all} \hspace{1mm} t\leq T, \hspace{1mm} \omega\in\Omega$

• Assume that $u \in C^{1,2}$, then :

$$du_t = (\partial_t u_t + \frac{1}{2} \partial^2_{\omega \omega} u_t) dt + \partial_\omega u_t dB_t, \mathbb{P}_0 - a.s.$$

Since u is a \mathbb{P}_0 -martingale, we obtain the heat equation :

$$\partial_t u + \frac{1}{2} \partial^2_{\omega\omega} u = 0$$
 and $u_T = \xi$

Example : Conditional expectation and Heat equation

- $\bullet \ \mathbb{P}_0$: Wiener measure on Ω
- By using the r.c.p.d. define for $\xi \in \mathbb{L}^1(\mathbb{P}_0)$:

 $u(t,\omega):=\mathbb{E}^{\mathbb{P}_0^{t,\omega}}ig[\xiig] \hspace{1mm} ext{for all} \hspace{1mm} t\leq T, \hspace{1mm} \omega\in\Omega$

• Assume that $u \in C^{1,2}$, then :

$$du_t = (\partial_t u_t + \frac{1}{2} \partial^2_{\omega \omega} u_t) dt + \partial_{\omega} u_t dB_t, \quad \mathbb{P}_0 - a.s.$$

Since u is a \mathbb{P}_0 -martingale, we obtain the heat equation :

$$\partial_t u + \frac{1}{2} \partial^2_{\omega\omega} u = 0$$
 and $u_T = \xi$

イロト 不得下 イヨト イヨト

Example 2 : Stochastic control and HJB equation

- Control : { $\kappa_r, r \leq T$ }, \mathbb{F} -prog. meas. valued in $K \subset \mathbb{R}^n$
- Controlled state : X^{κ} defined by :

$$X_r = x_r, r \leq t$$
 and $dX_s^{\kappa} = \mu(s, X^{\kappa}_{.}, \kappa_s)ds + \sigma(s, X^{\kappa}_{.}, \kappa_s)dB_s$

• Stochastic control problem :

$$u(t,\omega):=\sup_{\kappa\in\mathbb{K}}\mathbb{E}^{\mathbb{P}_0^{\kappa,\omega}}ig[\xi(X^\kappa]ig)ig] \hspace{0.2cm} ext{for all}\hspace{0.2cm}t\leq T,\;\omega\in\Omega$$

• Assume that $u \in C^{1,2}$, then by dynamic programming :

$$-\partial_t u - \sup_{k \in K} \left\{ \mu(t, \omega, k) \cdot \partial_\omega u + \frac{1}{2} \sigma \sigma^{\mathrm{T}}(t, \omega, k) : \partial^2_{\omega \omega} u \right\} = 0 \text{ and } u_{\mathcal{T}} = \xi$$

Example 2 : Stochastic control and HJB equation

- Control : $\{\kappa_r, r \leq T\}$, \mathbb{F} -prog. meas. valued in $K \subset \mathbb{R}^n$
- Controlled state : X^{κ} defined by :

$$X_r = x_r, r \leq t$$
 and $dX_s^{\kappa} = \mu(s, X^{\kappa}_{.}, \kappa_s)ds + \sigma(s, X^{\kappa}_{.}, \kappa_s)dB_s$

• Stochastic control problem :

$$u(t,\omega):=\sup_{\kappa\in\mathbb{K}}\mathbb{E}^{\mathbb{P}_0^{t,\omega}}ig[\xi(X^\kappa]ig)ig] ext{ for all } t\leq T,\;\omega\in\Omega$$

• Assume that $u \in C^{1,2}$, then by dynamic programming :

$$-\partial_t u - \sup_{k \in K} \left\{ \mu(t, \omega, k) \cdot \partial_\omega u + \frac{1}{2} \sigma \sigma^{\mathrm{T}}(t, \omega, k) : \partial^2_{\omega \omega} u \right\} = 0 \text{ and } u_{\mathcal{T}} = \xi$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Other examples

• Stochastic PDEs : Lions and Souganidis use a transformation along the inverse of the characteristics equation \longrightarrow forward path-dependent semilinear PDE

• Backward SDE \longrightarrow path-dependent semilinear PDE

 \bullet Second order Backward SDE \longrightarrow a certain class of path-dependent fully nonlinear PDE

• Dynamic programming equations for non-Markov differential games \implies Path-dependent Isaacs equation

イロト イヨト イヨト イヨト

Parabolic nonlinear PPDEs Examples

Why viscosity solutions of PPDEs

- To obtain wellposedness for a larger class of equations
- Powerful stability result (in particular, analysis of numerical approximation)
- Easy, and very adapted to control and optimization problems

Main difficulty : the paths space Ω is not locally compact

A (1) > A (2) > A

Outline

Motivation and examples

- Parabolic nonlinear PPDEs
- Examples

2 Definitions and first properties

- Smooth processes
- Definition of viscosity solutions
- Consistency, stability, partial comparison

3 Wellposedness

- Additional assumption
- Existence and uniqueness

イロト イヨト イヨト イヨト

Nondominated singular measures

• L > 0, \mathcal{P}_L : set of prob. meas. \mathbb{P} on Ω s.t.

 $|lpha^{\mathbb{P}}| \leq L, \ \ 0 \leq eta^{\mathbb{P}} \leq \sqrt{2L} \ I_d, \ \ dB_t = eta_t^{\mathbb{P}} dW_t^{\mathbb{P}} + lpha_t^{\mathbb{P}} dt, \quad \mathbb{P} ext{-a.s.}$

for some $\mathbb{F}-\mathrm{prog.}$ meas. processes $\alpha^{\mathbb{P}},\beta^{\mathbb{P}}$, and some d-dimensional $\mathbb{P}\text{-}\mathrm{Brownian}$ motion $W^{\mathbb{P}}$

• For $\xi \in \mathbb{L}^1(\mathcal{F}_T, \mathcal{P}_L)$, define the nonlinear expectation :

 $\overline{\mathcal{E}}^{L}[\xi] = \sup_{\mathbb{P} \in \mathcal{P}_{L}} \mathbb{E}^{\mathbb{P}}[\xi] \quad \text{and} \quad \underline{\mathcal{E}}^{L}[\xi] = \inf_{\mathbb{P} \in \mathcal{P}_{L}} \mathbb{E}^{\mathbb{P}}[\xi] = -\overline{\mathcal{E}}^{L}[-\xi]$

・ロン ・四マ ・ビリン ・ロン

Nondominated singular measures

• L > 0, \mathcal{P}_L : set of prob. meas. \mathbb{P} on Ω s.t.

 $|lpha^{\mathbb{P}}| \leq L, \ \ 0 \leq eta^{\mathbb{P}} \leq \sqrt{2L} \ I_d, \ \ dB_t = eta_t^{\mathbb{P}} dW_t^{\mathbb{P}} + lpha_t^{\mathbb{P}} dt, \quad \mathbb{P} ext{-a.s.}$

for some $\mathbb{F}-\mathrm{prog.}$ meas. processes $\alpha^{\mathbb{P}},\beta^{\mathbb{P}}$, and some d-dimensional $\mathbb{P}\text{-}\mathrm{Brownian}$ motion $W^{\mathbb{P}}$

• For $\xi \in \mathbb{L}^1(\mathcal{F}_T, \mathcal{P}_L)$, define the nonlinear expectation :

$$\overline{\mathcal{E}}^{L}[\xi] = \sup_{\mathbb{P}\in\mathcal{P}_{L}} \mathbb{E}^{\mathbb{P}}[\xi] \quad \text{and} \quad \underline{\mathcal{E}}^{L}[\xi] = \inf_{\mathbb{P}\in\mathcal{P}_{L}} \mathbb{E}^{\mathbb{P}}[\xi] = -\overline{\mathcal{E}}^{L}[-\xi]$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Differentiability of processes

• For $\varphi \in C^0(\Lambda)$, the right time-derivative is defined by Dupire :

$$\begin{array}{lll} \partial_t \varphi(t,\omega) &:= & \lim_{h \to 0, h > 0} \frac{1}{h} \Big[\varphi(t+h, \omega_{\cdot \wedge t}) - \varphi(t,\omega) \Big], & t < T \\ \partial_t \varphi(T,\omega) &:= & \lim_{t < T, t \uparrow T} \partial_t \varphi(t,\omega) \end{array}$$

whenever the limits exist

• $\varphi \in C^{1,2}(\Lambda)$ if $\varphi \in C^{0}(\Lambda)$, $\partial_{t}\varphi \in C^{0}(\Lambda)$, and there exist $\partial_{\omega}\varphi \in C^{0}(\Lambda, \mathbb{R}^{d})$, $\partial_{\omega\omega}^{2}\varphi \in C^{0}(\Lambda, \mathbb{S}^{d})$ s.t. for all $\mathbb{P} \in \bigcup_{L>0} \mathcal{P}_{L}$:

$$d\varphi_t = \partial_t \varphi_t dt + \partial_\omega \varphi_t \cdot dB_t + \frac{1}{2} \partial^2_{\omega\omega} \varphi_t : d \langle B \rangle, \quad \mathbb{P}\text{-a.s.}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Differentiability of processes

• For $\varphi \in C^0(\Lambda)$, the right time-derivative is defined by Dupire :

$$\begin{array}{lll} \partial_t \varphi(t,\omega) &:= & \lim_{h \to 0, h > 0} \frac{1}{h} \Big[\varphi(t+h, \omega_{\cdot \wedge t}) - \varphi(t,\omega) \Big], & t < T \\ \partial_t \varphi(T,\omega) &:= & \lim_{t < T, t \uparrow T} \partial_t \varphi(t,\omega) \end{array}$$

whenever the limits exist

•
$$\varphi \in C^{1,2}(\Lambda)$$
 if $\varphi \in C^{0}(\Lambda)$, $\partial_{t}\varphi \in C^{0}(\Lambda)$, and there exist
 $\partial_{\omega}\varphi \in C^{0}(\Lambda, \mathbb{R}^{d})$, $\partial_{\omega\omega}^{2}\varphi \in C^{0}(\Lambda, \mathbb{S}^{d})$ s.t. for all $\mathbb{P} \in \bigcup_{L>0}\mathcal{P}_{L}$:
 $d\varphi_{t} = \partial_{t}\varphi_{t}dt + \partial_{\omega}\varphi_{t} \cdot dB_{t} + \frac{1}{2}\partial_{\omega\omega}^{2}\varphi_{t} : d\langle B \rangle_{t}$, \mathbb{P} -a.s.

Smooth test processes

Recall nonlinear Snell envelope :

$$\overline{\mathcal{S}}_t^L[X](\omega) := \sup_{\tau \in \mathcal{T}^t} \overline{\mathcal{E}}_t^L[X_\tau^{t,\omega}], \quad \text{and} \quad \underline{\mathcal{S}}_t^L[X](\omega) := -\overline{\mathcal{S}}_t^L[-X](\omega)$$

Define :

$$\underline{\mathcal{A}}^{L} u(t,\omega) := \left\{ \varphi \in C^{1,2}(\Lambda^{t}) : \ (\varphi - u^{t,\omega})_{t}(\mathbf{0}) = \underline{\mathcal{S}}_{t}^{L} \big[(\varphi - u^{t,\omega})_{.\wedge h} \big] \right.$$

for some $h \in \mathcal{H}^{t} \left. \right\}$

$$\overline{\mathcal{A}}^{L} u(t,\omega) := \left\{ \varphi \in C^{1,2}(\Lambda^{t}) : (\varphi - u^{t,\omega})_{t}(\mathbf{0}) = \overline{\mathcal{S}}_{t}^{L} [(\varphi - u^{t,\omega})_{.\wedge h}] \right.$$
for some $h \in \mathcal{H}^{t} \left. \right\}$

イロト イヨト イヨト イヨト

æ

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Definition : Viscosity subsolution

 $u \in \underline{\mathcal{U}}$ is a

• viscosity *L*-subsolution of PPDE if :

 $-\partial_t \varphi_t(0) - G(t, \omega, u(t, \omega), \partial_\omega \varphi_t(0), \partial^2_{\omega \omega} \varphi_t(0)) \leq 0$

for all $(t,\omega) \in [0,T) \times \Omega$ and $\varphi \in \underline{\mathcal{A}}^{L}u(t,\omega)$

• viscosity subsolution of PPDE if u is viscosity *L*-subsolution of PPDE for some L > 0

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Definition : Viscosity subsolution

 $u \in \underline{\mathcal{U}}$ is a

• viscosity *L*-subsolution of PPDE if :

 $-\partial_t \varphi_t(0) - G(t, \omega, u(t, \omega), \partial_\omega \varphi_t(0), \partial^2_{\omega \omega} \varphi_t(0)) \leq 0$

for all
$$(t,\omega) \in [0,T) imes \Omega$$
 and $\varphi \in \underline{\mathcal{A}}^{L}u(t,\omega)$

• viscosity subsolution of PPDE if u is viscosity *L*-subsolution of PPDE for some L > 0

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Definition : Viscosity supersolution

 $u\in\overline{\mathcal{U}}$ is a

• viscosity *L*-supersolution of PPDE if :

 $-\partial_t \varphi_t(0) - G(t, \omega, u(t, \omega), \partial_\omega \varphi_t(0), \partial^2_{\omega \omega} \varphi_t(0)) \geq 0$

for all
$$(t,\omega) \in [0,T) \times \Omega$$
 and $\varphi \in \overline{\mathcal{A}}^{L} u(t,\omega)$

• viscosity supersolution of PPDE if u is viscosity *L*-supersolution of PPDE for some L > 0

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Definition : Viscosity supersolution

 $u\in\overline{\mathcal{U}}$ is a

• viscosity *L*-supersolution of PPDE if :

 $-\partial_t \varphi_t(0) - G(t, \omega, u(t, \omega), \partial_\omega \varphi_t(0), \partial_{\omega\omega}^2 \varphi_t(0)) \geq 0$

for all
$$(t,\omega) \in [0,T) imes \Omega$$
 and $\varphi \in \overline{\mathcal{A}}^{\mathsf{L}} u(t,\omega)$

• viscosity supersolution of PPDE if u is viscosity *L*-supersolution of PPDE for some L > 0

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Nonlinearity, first assumption

Assumption G1 $G(t, \omega, y, z, \gamma)$ nondecreasing in γ and satisfies :

(i) $G(\cdot, y, z, \gamma)$ is \mathbb{F} -prog. meas., and $\|G(\cdot, 0, 0, 0)\|_{\infty} < \infty$.

(ii) G is uniformly continuous in ω

(iii) G is uniformly Lipschitz in (y, z, γ)

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Consistency with classical solutions

Theorem

Let Assumption G1 hold and $u \in C_b^{1,2}(\Lambda)$. Then the following assertions are equivalent :

- u classical solution (resp. subsolution, supersolution) of PPDE
- u viscosity solution (resp. subsolution, supersolution) of PPDE

Stability

Theorem

Let $(G^{\varepsilon}, \varepsilon > 0)$ be a family of coefficients

- satisfying Assumptions G1 unif.
- $G^{\varepsilon} \longrightarrow G$ as $\varepsilon \rightarrow 0$, loc. unif.

For fixed L > 0, let $(u^{\varepsilon})_{\varepsilon > 0}$ be such that

- u^ε is viscosity L−subsolution of PPDE with coefficients G^ε, for all ε > 0,
- $u^{\varepsilon} \longrightarrow u$, uniformly in Λ .

Then u is a viscosity L-subsolution of PPDE with coefficient G.

Smooth processes Definition of viscosity solutions Consistency, stability, partial comparison

Existence in all previous examples...

- Non-Markov stochatsic control
- Non-Markov stochatsic differential game
- Second order Backward SDE

all define a viscosity solution of the corresponding path-dependent PDE

Additional assumption Existence and uniqueness

Outline

Motivation and examples

- Parabolic nonlinear PPDEs
- Examples

2 Definitions and first properties

- Smooth processes
- Definition of viscosity solutions
- Consistency, stability, partial comparison

3 Wellposedness

- Additional assumption
- Existence and uniqueness

イロン イヨン イヨン イ

- E - N

Freezing ω in the generator

• Define the deterministic function on $[t, T] imes \mathbb{R} imes \mathbb{R}^d imes \mathcal{S}^d$:

$$g^{t,\omega}(s,y,z,\gamma) := G(s,\omega_{\cdot\wedge t},y,z,\gamma)$$

• Consider the standard PDE :

$$\mathsf{L}^{t,\omega}v := -\partial_t v - g^{t,\omega}(s,v,Dv,D^2v) = 0, \ (t,x) \in O_t^{\varepsilon,\eta}$$

where

$$\mathcal{O}_t^{arepsilon,\eta} \hspace{.1in} := \hspace{.1in} [t,(1+\eta) \, T) imes \{x \in \mathbb{R}^d: |x| < arepsilon\}, \hspace{.1in} arepsilon > 0, \eta \geq 0$$

臣

Additional Assumption on the generator

Assumption G2 For any small $\varepsilon > 0, \eta \ge 0$ and any $(t, \omega) \in \Lambda$, PDE is wellposed in the following sense :

(i) for all $\delta > 0$, there exist classical supersolution \overline{w}^{δ} and subsolution \underline{w}^{δ} of the frozen path PDE s.t.

$$-\|h\|_{\infty} - \delta \leq \underline{w}^{\delta} \leq h \leq \overline{w}^{\delta} \leq \|h\|_{\infty} + \delta \quad \text{on} \quad \partial O_t^{\varepsilon,\eta},$$

(ii) Peron's approach : given a continuous function h : ∂O_t^{ε,η} → ℝ, the PDE with boundary condition h has a unique viscosity solution v and it satisfies v = v = v, where

 $\overline{v}(s,x) := \inf \left\{ \phi(s,x) \colon \phi \in C^{1,2}(\bar{O}_t^{\varepsilon,\eta}), \ \mathsf{L}^{t,\omega}\phi \ge 0 \ \text{in} \ O_t^{\varepsilon,\eta}, \ \phi \ge h \ \text{on} \ \partial O_t^{\varepsilon,\eta} \right\}$

 $\underline{\nu}(s,x) := \sup \Big\{ \psi(s,x) \colon \phi \in C^{1,2}(\bar{O}_t^{\varepsilon,\eta}), \ \mathsf{L}^{t,\omega} \psi \leq 0 \text{ in } O_t^{\varepsilon,\eta}, \ \phi \leq h \text{ on } \partial O_t^{\varepsilon,\eta} \Big\}$

イロト イポト イヨト イヨト

Additional Assumption on the generator

Assumption G2 For any small $\varepsilon > 0, \eta \ge 0$ and any $(t, \omega) \in \Lambda$, PDE is wellposed in the following sense :

(i) for all $\delta > 0$, there exist classical supersolution \overline{w}^{δ} and subsolution \underline{w}^{δ} of the frozen path PDE s.t.

$$-\|h\|_{\infty} - \delta \leq \underline{w}^{\delta} \leq h \leq \overline{w}^{\delta} \leq \|h\|_{\infty} + \delta \quad \text{on} \quad \partial O_t^{\varepsilon,\eta},$$

(ii) Peron's approach : given a continuous function $h : \partial O_t^{\varepsilon,\eta} \to \mathbb{R}$, the PDE with boundary condition h has a unique viscosity solution v and it satisfies $v = \overline{v} = \underline{v}$, where

$$\overline{\nu}(s,x) := \inf \left\{ \phi(s,x) \colon \phi \in C^{1,2}(\overline{O}_t^{\varepsilon,\eta}), \ \mathsf{L}^{t,\omega}\phi \ge 0 \text{ in } O_t^{\varepsilon,\eta}, \ \phi \ge h \text{ on } \partial O_t^{\varepsilon,\eta} \right\}$$
$$\underline{\nu}(s,x) := \sup \left\{ \psi(s,x) \colon \phi \in C^{1,2}(\overline{O}_t^{\varepsilon,\eta}), \ \mathsf{L}^{t,\omega}\psi \le 0 \text{ in } O_t^{\varepsilon,\eta}, \ \phi \le h \text{ on } \partial O_t^{\varepsilon,\eta} \right\}$$

Additional assumption Existence and uniqueness

Sufficient conditions for Assumption G2

Assumption G1 and

- G convex in γ and uniformly elliptic,
- or, G is convex in (y, z, γ)
- or, $d\leq 2$

The main results

Theorem (Comparison)

Under Assumptions G1-G2, let $u^1 \in \underline{\mathcal{U}}$, $u^2 \in \overline{\mathcal{U}}$, $\xi \in \mathrm{UC}_b(\Omega)$ s.t

- u^1 is a bounded viscosity subsolution of PPDE
- u^2 is a bounded viscosity supersolution of PPDE

•
$$u^1(T, \cdot) \le \xi \le u^2(T, \cdot)$$

Then $u^1 \leq u^2$ on Λ .

Theorem (Existence)

Under Assumptions G1, G2, for any $\xi \in UC_b(\Omega)$, the PPDE with terminal condition ξ has a unique bounded viscosity solution $u \in UC_b(\Lambda)$.

イロト イヨト イヨト イヨト

The main results

Theorem (Comparison)

Under Assumptions G1-G2, let $u^1 \in \underline{\mathcal{U}}$, $u^2 \in \overline{\mathcal{U}}$, $\xi \in \mathrm{UC}_b(\Omega)$ s.t

- u^1 is a bounded viscosity subsolution of PPDE
- u^2 is a bounded viscosity supersolution of PPDE

•
$$u^1(T, \cdot) \leq \xi \leq u^2(T, \cdot)$$

Then $u^1 \leq u^2$ on Λ .

Theorem (Existence)

Under Assumptions G1, G2, for any $\xi \in UC_b(\Omega)$, the PPDE with terminal condition ξ has a unique bounded viscosity solution $u \in UC_b(\Lambda)$.

・ロト ・日下・ ・日下・