Approximations of displacement interpolations by
entropic interpolations

Christian Léonard

Université Paris Ouest

1ére journée MAS-MODE
IHP - 9 janvier 2017



Interpolations in P(X)

° X: Riemannian manifold  (state space)
@ P(X): set of all probability measures on X
® po, 1 € P(X)

@ interpolate between g and g



Interpolations in P(X)

@ Standard affine interpolation between g and w1
= (1 — t)po + tug € P(X), 0<t <1
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Interpolations in P(X)

Affine interpolations require mass transference with infinite speed

@ Denial of the geometry of X

@ We need interpolations built upon trans-portation, not tele-portation



Interpolations in P(X)

@ We seek interpolations of this type
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Interpolations in P(X)

@ We seek interpolations of this type
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Displacement interpolation

Respect geometry
@ we have already used geodesics

@ how to choose y = T(x) such that interpolations encrypt curvature
as best as possible?

@ no shock

@ perform optimal transport

Monge's problem
[y d?(x, T(x)) po(dx) — min; T: Typo =

@ d: Riemannian distance



Curvature

@ geodesics and curvature are intimately linked

@ several geodesics give information on the curvature




Lazy gas experiment

t=0 0<t<1 t=1

Positive curvature



Lazy gas experiment

t=0 0<t<l1

Negative curvature



Curvature and displacement interpolations

Relative entropy
H(p|r) := [ log(dp/dr) dp, p, r : probability measures

Convexity of the entropy along displacement interpolations
The following assertions are equivalent
@ Ric> K
o along any [, j1] = (e)ocecr, < H(uelvol) > KW2(jio, 1)

@ von Renesse-Sturm (04)
@ W, is the Wasserstein distance
@ starting point of the Lott-Sturm-Villani theory



Schrodinger's thought experiment

Consider a huge collection of non-interacting identical Brownian particles.
If the density profile of the system at time t = 0 is approximately
o € P(R3), you expect it to evolve along the heat flow:

{ vy =1get®/2 0<t<1
Yo = Mo
where A is the Laplace operator.

Suppose that you observe the density profile of the system at time t = 1
to be approximately u; € P(R3) with yy different from the expected v.
Probability of this rare event ~ exp(—CNavogadro)-

Schrodinger's question (1931)

Conditionally on this very rare event, what is the most likely path
(t)o<t<1 € P(R3)OA of the evolving profile of the particle system?




Schrodinger's problem

e X : Riemannian manifold
o Q:= {paths} c x[0:1]
e ReP() : Wiener measure (Brownian motion)

® Lo, 1 € P(X) are the initial and final prescribed profiles

Schrodinger’s problem

H(P|R) — min; P € P(Q): Py = o, P1 = 1

(den)J

@ Sanov's theorem



Schrodinger's problem

Q W= (wt)ogtgl € Q
e Xy  weQ—weX, 0<t<1 (canonical process)
o Pi(dz) :=[(Xe)#Pl(dz) = P(X; € dz) € P(X), P eP(Q)

Definition. R-entropic interpolation

[110, 111] R := (P¢)o<t<1 with P the unique solution of (Sayn).

It is the answer to Schrodinger’s question



Monge-Kantorovich problem

® Lo, 1 € P(X) are the initial and final prescribed profiles

Monge problem
[y d?(x, T(x)) po(dx) — min; T Tupo=m

Monge-Kantorovich problem

/ d?(x,y) m(dxdy) — min; 7€ P(X?): 7 = po, ™ = i1
X2

o 77 (dxdy) = po(dx)d1(x)(dy)



Dynamical Monge-Kantorovich problem

Monge-Kantorovich problem

/ d?(x,y) m(dxdy) — min; 7€ P(X?): 7m0 = po, 7 = 11 (MK)
X2

Dynamical Monge-Kantorovich problem

EpA — min; P e P(Q) Py = o, P = 1 (MKdyn)

where A= [ |X,|? dt € [0, ¢],

e min {A(w);wo = x,w1 = y} = d?(x, y)
o inf(MK) = inf MKqyn =: W5 (uo, p11)




Dynamical Monge-Kantorovich and Schrodinger problems

Dynamical Monge-Kantorovich problem

EpA — min; P € P(Q) : Py = po, P1 = 11 (MKdyn)J

where A := fol |X¢|2 dt € [0, o]
Schrodinger’s problem
(den)J

H(P|R) — min; P € P(Q): Po= o, P1 =111

where H(P|R) := [, log(dP/dR) dP



Lazy gas experiments

e Lazy gas experiment at zero temperature (Monge)
» Zero temperature
» Displacement interpolations
» Optimal transport

@ Lazy gas experiment at positive temperature (Schrodinger)

» Positive temperature
» Entropic interpolations
» Minimal entropy



Lazy gas experiments

t=0 0<t<l t=1

Negative curvature
Zero temperature



Lazy gas experiments

Negative curvature
Positive temperature



Cooling down

Aim

Drifting from Schrodinger problem to an optimal transport problem

To decrease temperature:
@ slow down the particles of the heat bath

@ more generally, decrease fluctuations

Slowed down reference measures

(Bt)t20 . Brownian motion on the Riemannian manifold X
R: law of (B:)o<t<1
R%: law of (By/k)o<t<1

k — 0o




Cooling down

k=1:
k=10:
k=o00:

il

RY



Cooling down

o N—oo, k=1:
the whole particle system performs a rare event to travel from pg to
M1
» cooperative behavior
» Gibbs conditioning principle (thermodynamical limit: N — o0)

o N=1, k—o0:
each individual particle faces a hard task and must travel along an
approximate geodesic

» individual behavior
» large deviation principle (cooling down limit: k — oc0)

Cooling down principle

The cooled down sequence (R¥)x>1 encodes some geometry

o N— oo, k—o00: these two behaviors superpose



Results

Results 1
@ displacement interpolations feel curvature

@ entropic interpolations also feel curvature

Results 2
@ entropic interpolations converge to displacement interpolations

@ entropic interpolations regularize displacement interpolations

@ [-convergence



Results

Results 2 (continued)

The same kind of results hold in other settings
(a) discrete graphs

(b) Finsler manifolds

(c) interpolations with varying mass

(a) graphs: random walk
(b) Finsler:  jump process in a manifold, (work in progress)

(c) varying mass: branching process, (work in progress)



Results

Results 3

Schrodinger’s problem is an analogue of Hamilton's least action principle.
It allows for dynamical theories of

@ diffusion processes

@ random walks on graphs

@ stochastic Newton equation

@ acceleration is related to curvature



Remainder of the talk

Let us give some details about Results 2:

@ entropic interpolations converge to displacement interpolations




Schrodinger's problem

-} P01 = (Xo,Xl)#P S P(X2)
@ PY=P(-| Xo=x,X1 =y) € P(Q) : bridge
) P() = fXQ ny(') P01(dxdy) € P(Q)

Result
If it exists, the unique solution P of (Sqyy) satisfies
o PY =RY, Vxy
o P(:) = [y R¥(:) m(dxdy)
where Py; = m € P(X?) is the unique solution of (S) below
e inf(S) = H(P|R) = H(Po1|Ro1)

Schrodinger’s problem

H(7|Ro1) — min; 7 € P(X?): mo = o, 71 = i1 (S)

) H(P|R) = H(P01|R01) + fX2 H(ny’RXy) P01(dxdy)



Schrodinger's problem

Result

Assume: R is m-stationary Markov,

m®m<K Ry < m@m, H(ug|m), H(pi|m) < oo, ...
Then, (Sqyn) and (S) admit a solution.

@ long history: Schrodinger, Bernstein, Fortet, Beurling, Csiszar,

@ and also:

Rischendorf & Thomsen, Follmer & Gantert, L.

Jamison, Zambrini, Dai Pra, Wakolbinger, Pavon,
Mikami, Reelly, Thieullen, ...



Cooling down (Brownian case)

@ suppose that in addition the heat bath is pretty cold
@ cooling down is (mostly) slowing down the particles
e R= LaW((Bt)ogtgl), Rk = LaW((Bt/k)Ogtgl), k — 00

H(P|R*)/k — min; PeP(Q): Py= o, P1 =1 (Sgyn)J

dXt = dBt, R-a.s.
dX; = \/1/k dB;, R*-as.
Ré‘l(dxdy) = (21r/k) =92 exp(—k|y — x|?/2) dxdy
with P¥ solution of (Sﬁyn) .
nf(Sky) = nf(S%) = | Sy~ xP Ply(dsdy) + 0rne(1)
X2
@ this suggests that

“limk_soo(SK) = (MK)” J




Cooling down (Brownian case)

Cooled down Schrodinger problem

H(r|R§)/k — min; 7 € P(X?): 7o = po, 71 = ()

v

Monge-Kantorovich problem

1 .
| 3ly =P tedy) > mini 7€ PAZ) im0 = oy =1 (MK)

v

Theorem
o I-limy_;o(S¥) = (MK)
o limy 0 inf(S¥) = inf(MK) := W2(uo, f11)/2
o “limy_oo ™ =7": solution of (MK)

Mikami (2004), L. (2012)



Cooling down (Brownian case)

Cooling particles down brings geometry (Brownian case)

iMoo REX = dyv, ¥ : constant speed geodesic

e k=1:
y
t=0 =1
e k=10
y
x e
o k=00



Cooling down (Brownian case)

Convergence schema

Pk(dw) = [, R*Y(dw) w*(dxdy)
\ 1 1
P(dw) = [y2 Odypo(dw) 7(dxdy)

Entropic interpolations converge to displacement interpolations

ph(dz) = [y REY(dz) 7(dxdy), 0<t<1

) ! !
pe(dz) = [y Op(dz) m(dxdy), 0<t<1

McCann's displacement interpolation

[110, 1] PP := (pe)o<e<t




Doubly indexed large deviation principle

o choose (R¥),>1 such that it satisfies some LDP

LDP for (Rk)k21
@ Rkx k;xoo exp(—ak[C + L{XO:X}])a Vx

@ ap — o0, C:Q — [0,00], coercive
e {C =0} is the limiting support of “all geodesics”

Example (slow Brownian motion)

ak =k, C(w)= [y 3lafdt, limysoo REY =8




['-convergence

Dynamical cooled down Schrodinger problem

H(P|R¥)/ax — min; P € P(Q): Po = o, P1 = pu¥ (Ssyn)

v

Dynamical Monge-Kantorovich problem

EpC — min; P e P(Q) : Py = po, P1 = 111 (MKdyn)

o

Theorem

@ there exists u’f — 1 such that T- Iimk_m(Sgyn) = (MKayn)
limg o0 inf(Sgyn) = inf(MKayn)
“limk_s0o PX = P " solution of (MKgyn)




['-convergence

o if PK— P we get the following schema

Convergence schema

Pk(dw) = fX2 Rk (dw)  mk(dxdy)

J 4 4
P(dw) = [y G¥(dw) m(dxdy)

Entropic interpolations converge to displacement interpolation

ph(dz) = [y REY(dz) 7(dxdy), 0<t<1
! ! !
pe(dz) = [po GY(dz) m(dxdy), 0<t<1

Definition (displacement interpolation)

[0, 111] P := (pe)o<e<a




[2-type displacement interpolations on a vector space

o X =R"
[ kt]

o R ZIM=x+ kD V; (Vj)jp1iid  EV =0
j=1

Mogulskii's theorem

Cw) = [y Lv(@e)dt,  c(x,y) = Ly(y —x)

o Ly(v)=sup,{p-v—Hy(p)}; Hv(p)=logEexp(p-V)
o Ly(v) = Ovmol|v[?)
o c(x,y)=inf{C(w);w € Q:wy=x,w1 =y}



Interpolations on a discrete graph

e metric graph (X, ~, d)

x ~ y means that (x,y) is an edge

@ length Uw) = ZOStSl l{wt_ 2oy d(We—, wt)
e intrinsic distance d(x,y) = inf {{(w) 1w € Qwp = x,w1 = y}



Interpolations on a discrete graph

@ to recover d:

» slow down the walk
» conditionatt=0and t =1

o reference walk: R € P(2) with jump kernel
JX(dy) = Zy:ywx JX(y) 6}/

Lazy random walks R*

J(dy)= D Kk ? ()4,

yy~x




Interpolations on a discrete graph

Geodesics

M :={w e Quwy=x,w1 =y, l(w) =d(x,y)}
[ = Uxy T

Convergence of bridges

lim RKY = G € P(IY)

k—o0

o G := lrefolJXt(X)dt R

Convergence of the interpolations
ax=logk, C=¢ c=d

o limy o0 inf(S¥) = Wi (uo, 1)



[1-type interpolations on a diffuse length space

o (X,d): diffuse metric space

Definition (diffuse metric space)

(X, d) is diffuse if there exists a Borel measure m on X’ such that
e sup, m(Bl) < oo
e m(BY) >0, Vxe X, Ve>0

e B :={yeX:d(x,y)<e}



[1-type interpolations on a diffuse length space

Reference processes
® R« Ji(dy) = 1g1(y) m(dy)
o RK & JK(dy) = e_llsl/k(y) m(dy)

o S¢:=B\ B

Convergence of the entropic interpolations
ax = k, C = length, c=d

o H(P|R¥) = H(P|R) — Eplog(dR*/dR)

o —log(dR¥/dR)/k = #{t : Xo- # Xe}/k + Oxso(1/K)
= length(X) + Ok—00(1/k) O

@ work in progress with Luca Tamanini
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